化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3718-3729.DOI: 10.11949/0438-1157.20240111
收稿日期:
2024-01-24
修回日期:
2024-07-12
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
赵长颖
作者简介:
吕潇峻(1999—),男,硕士研究生,lvxiaojn@sjtu.edu.cn
基金资助:
Xiaojun LYU(), Changying ZHAO(
), Jun YAN
Received:
2024-01-24
Revised:
2024-07-12
Online:
2024-10-25
Published:
2024-11-04
Contact:
Changying ZHAO
摘要:
针对Ca(OH)2/CaO热化学储热体系的放热过程,提出了双轴搅拌反应器并对其“三传一反”过程进行了数值研究,揭示了体系反应的多物理场耦合机理,分析了双轴搅拌反应器用于热化学储热的可行性,讨论了体系在双轴搅拌反应器内进行放热反应的特性。结果表明,双轴搅拌反应器改善了体系放热反应的传热传质性能;体系1200 s放热过程的转化率为0.49,峰值放热功率和稳定放热功率分别可以达到5.4 kW和3 kW;通过调节水蒸气分压可以控制体系的反应温区,而较低的初始进口温度不仅可以加快反应进程,还能减少体系的额外预热量;反应器的换热能力会明显影响放热过程进行,特别是在高转速和高填充高度的反应条件下,实际应用中应考虑需求来匹配合适的换热装置。
中图分类号:
吕潇峻, 赵长颖, 闫君. 双轴搅拌反应器内Ca(OH)2/CaO热化学储热体系的放热研究[J]. 化工学报, 2024, 75(10): 3718-3729.
Xiaojun LYU, Changying ZHAO, Jun YAN. Exothermic study of Ca(OH)2/CaO thermochemical heat storage system in biaxial stirred reactor[J]. CIESC Journal, 2024, 75(10): 3718-3729.
符号 | 几何参数 | 数值 |
---|---|---|
d0 | 搅拌轴直径 | 15 mm |
r1 | 底弧1半径 | 47 mm |
r2 | 底弧2半径 | 75 mm |
h0 | 入口大小 | 5 mm |
h1 | 侧边1高度 | 17.5 mm |
h2 | 侧边2高度 | 47.5 mm |
h3 | 出口高度 | 70 mm |
l0 | 出口大小 | 10 mm |
l1 | 上部宽度 | 95 mm |
hb | 叶片宽度 | 10 mm |
lb | 叶片厚度 | 2 mm |
表1 模型的几何结构参数
Table 1 Geometrical parameters of the model
符号 | 几何参数 | 数值 |
---|---|---|
d0 | 搅拌轴直径 | 15 mm |
r1 | 底弧1半径 | 47 mm |
r2 | 底弧2半径 | 75 mm |
h0 | 入口大小 | 5 mm |
h1 | 侧边1高度 | 17.5 mm |
h2 | 侧边2高度 | 47.5 mm |
h3 | 出口高度 | 70 mm |
l0 | 出口大小 | 10 mm |
l1 | 上部宽度 | 95 mm |
hb | 叶片宽度 | 10 mm |
lb | 叶片厚度 | 2 mm |
符号 | 物理参数 | 数值 |
---|---|---|
Dp | 颗粒粒径 | 100 μm |
A | 指前因子 | 53×103 s-1[ |
E | 活化能 | 83×103 J/mol[ |
R | 气体常数 | 8.314 J/(mol·K) |
Ca(OH)2的密度 | 2200 kg/m3[ | |
ρCaO | CaO的密度 | 3320 kg/m3[ |
λs | 固体的热导率 | 2 W/(m·K)[ |
Ca(OH)2的比定压热容 | f1(T)[ | |
cp,CaO | CaO的比定压热容 | f2(T)[ |
表2 模型的重要物理参数
Table 2 Important physical parameters of the model
符号 | 物理参数 | 数值 |
---|---|---|
Dp | 颗粒粒径 | 100 μm |
A | 指前因子 | 53×103 s-1[ |
E | 活化能 | 83×103 J/mol[ |
R | 气体常数 | 8.314 J/(mol·K) |
Ca(OH)2的密度 | 2200 kg/m3[ | |
ρCaO | CaO的密度 | 3320 kg/m3[ |
λs | 固体的热导率 | 2 W/(m·K)[ |
Ca(OH)2的比定压热容 | f1(T)[ | |
cp,CaO | CaO的比定压热容 | f2(T)[ |
符号 | 参数 | 数值 |
---|---|---|
uin | 气体入口流速 | 0.5 m/s |
S/N | 水蒸气/氮气比例 | 0.8 |
pout | 初始和出口压力 | 1 bar |
ω | 搅拌转速 | 100 r/min |
T0 | 初始和进口温度 | 623 K |
H | CaO的填充高度 | 20 mm |
h | 壁面传热系数 | 12 W/(m2·K) |
Tf | 外部自由来流温度 | 303 K |
表3 基础工况的参数设置
Table 3 Parameters of the base case
符号 | 参数 | 数值 |
---|---|---|
uin | 气体入口流速 | 0.5 m/s |
S/N | 水蒸气/氮气比例 | 0.8 |
pout | 初始和出口压力 | 1 bar |
ω | 搅拌转速 | 100 r/min |
T0 | 初始和进口温度 | 623 K |
H | CaO的填充高度 | 20 mm |
h | 壁面传热系数 | 12 W/(m2·K) |
Tf | 外部自由来流温度 | 303 K |
1 | Wang K, Yan T, Li R K, et al. A review for Ca(OH)2/CaO thermochemical energy storage systems[J]. Journal of Energy Storage, 2022, 50: 104612. |
2 | Gil A, Medrano M, Martorell I, et al. State of the art on high temperature thermal energy storage for power generation (Part 1): Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55. |
3 | Carrillo A J, González-Aguilar J, Romero M, et al. Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816. |
4 | Sunku Prasad J, Muthukumar P, Desai F, et al. A critical review of high-temperature reversible thermochemical energy storage systems[J]. Applied Energy, 2019, 254: 113733. |
5 | Yuan Y, Li Y J, Duan L B, et al. CaO/Ca(OH)2 thermochemical heat storage of carbide slag from calcium looping cycles for CO2 capture[J]. Energy Conversion and Management, 2018, 174: 8-19. |
6 | Pardo P, Deydier A, Anxionnaz-Minvielle Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. |
7 | Xia B Q, Zhao C Y, Yan J, et al. Development of granular thermochemical heat storage composite based on calcium oxide[J]. Renewable Energy, 2020, 147: 969-978. |
8 | Funayama S, Takasu H, Zamengo M, et al. Performance of thermochemical energy storage of a packed bed of calcium hydroxide pellets[J]. Energy Storage, 2019, 1(2): e40. |
9 | Linder M, Roßkopf C, Schmidt M, et al. Thermochemical energy storage in kW-scale based on CaO/Ca(OH)2 [J]. Energy Procedia, 2014, 49: 888-897. |
10 | Wang M Y, Chen L, He P, et al. Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors[J]. Energy, 2019, 181: 417-428. |
11 | Ranjha Q, Oztekin A. Numerical analyses of three-dimensional fixed reaction bed for thermochemical energy storage[J]. Renewable Energy, 2017, 111: 825-835. |
12 | Risthaus K, Bürger I, Linder M, et al. Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments[J]. Applied Energy, 2020, 261: 114351. |
13 | Yan J, Zhao C Y. Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage[J]. Applied Energy, 2016, 175: 277-284. |
14 | Yan J, Zhao C Y, Xia B Q, et al. The effect of dehydration temperatures on the performance of the CaO/Ca(OH)2 thermochemical heat storage system[J]. Energy, 2019, 186: 115837. |
15 | Schaube F, Wörner A, Tamme R. High temperature thermochemical heat storage for concentrated solar power using gas-solid reactions[J]. Journal of Solar Energy Engineering, 2011, 133(3): 031006. |
16 | Schmidt M, Szczukowski C, Roßkopf C, et al. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559. |
17 | Dai L, Long X F, Lou B, et al. Thermal cycling stability of thermochemical energy storage system Ca(OH)2/CaO[J]. Applied Thermal Engineering, 2018, 133: 261-268. |
18 | Shi T, Xu H J, Qi C, et al. Multi-physics modeling of thermochemical heat storage with enhance heat transfer[J]. Applied Thermal Engineering, 2021, 198: 117508. |
19 | Humbert G, Ding Y L, Sciacovelli A. Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures[J]. Applied Energy, 2022, 311: 118633. |
20 | Chen J T, Xia B Q, Zhao C Y. Topology optimization for heat transfer enhancement in thermochemical heat storage[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119785. |
21 | Angerer M, Becker M, Härzschel S, et al. Design of a MW-scale thermo-chemical energy storage reactor[J]. Energy Reports, 2018, 4: 507-519. |
22 | Schmidt M, Gollsch M, Giger F, et al. Development of a moving bed pilot plant for thermochemical energy storage with CaO/ Ca(OH)2 [C]//AIP Conference Proceedings. Cape Town, South Africa, 2016, 1734: 050041. |
23 | Cosquillo Mejia A, Afflerbach S, Linder M, et al. Experimental analysis of encapsulated CaO/Ca(OH)2 granules as thermochemical storage in a novel moving bed reactor[J]. Applied Thermal Engineering, 2020, 169: 114961. |
24 | Pardo P, Anxionnaz-Minvielle Z, Rougé S, et al. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage[J]. Solar Energy, 2014, 107: 605-616. |
25 | Criado Y A, Huille A, Rougé S, et al. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications[J]. Chemical Engineering Journal, 2017, 313: 1194-1205. |
26 | Rougé S, Criado Y A, Soriano O, et al. Continuous CaO/Ca(OH)2 fluidized bed reactor for energy storage: first experimental results and reactor model validation[J]. Industrial & Engineering Chemistry Research, 2017, 56(4): 844-852. |
27 | Bian Z G, Li Y J, Zhang C X, et al. Heat release performance and evolution of CaO particles under fluidization for CaO/Ca(OH)2 thermochemical heat storage[J]. Process Safety and Environmental Protection, 2021, 155: 166-176. |
28 | Talebi E, Morgenstern L, Würth M, et al. Effect of particle size distribution on heat transfer in bubbling fluidized beds applied in thermochemical energy storage[J]. Fuel, 2023, 344: 128060. |
29 | Xi Y T, Chen Q, You C F. Flow characteristics of biomass particles in a horizontal stirred bed reactor(Part Ⅱ): Modeling studies on particle residence time distribution and axial mixing[J]. Powder Technology, 2015, 269: 585-595. |
30 | Hou L T, Wu Y C, Chen X M, et al. Analysis of waste tire particle movement in a single horizontal-axis stirred reactor based on the eulerian discrete element method[J]. Sustainability, 2024, 16(6): 2301. |
31 | Alonso E, Gallo A, Roldán M I, et al. Use of rotary kilns for solar thermal applications: review of developed studies and analysis of their potential[J]. Solar Energy, 2017, 144: 90-104. |
32 | Zondag H A, Van E M, Schuitema R, et al. Engineering assessment of reactor designs for thermochemical storage of solar heat[C]// Proceedings of the 11th International Conference on Thermal Energy Storage. Stockholm, Sweden, 2009. |
33 | 刘叶凤. 卧式双轴搅拌釜数值模拟与实验研究[D]. 天津: 天津大学, 2013. |
Liu Y F. Numerical simulation and experimental study of horizontal twin-shaft stirred tank[D]. Tianjin: Tianjin University, 2013. | |
34 | Wang M Y, Chen L, Zhou Y H, et al. Numerical simulation of the calcium hydroxide/calcium oxide system dehydration reaction in a shell-tube reactor[J]. Applied Energy, 2022, 312: 118778. |
35 | Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
36 | Schaube F, Koch L, Wörner A, et al. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage[J]. Thermochimica Acta, 2012, 538: 9-20. |
[1] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[2] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[3] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[4] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[5] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[6] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[7] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[8] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[9] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[10] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[11] | 黄斌, 丰生杰, 傅程, 张威. 液滴撞击单丝铺展特性的数值研究[J]. 化工学报, 2024, 75(6): 2233-2242. |
[12] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[13] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[14] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[15] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||