化工学报 ›› 2019, Vol. 70 ›› Issue (8): 2854-2863.DOI: 10.11949/0438-1157.20190308
收稿日期:
2019-04-01
修回日期:
2019-06-25
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
邓丽芳
作者简介:
王鲁丰(1994—),男,硕士研究生,基金资助:
Lufeng WANG1,2(),Xin QIAN1,2,Lifang DENG1(
),Haoran YUAN1
Received:
2019-04-01
Revised:
2019-06-25
Online:
2019-08-05
Published:
2019-08-05
Contact:
Lifang DENG
摘要:
氮气是储量丰富且廉价易得的氮源,但无法被人类或动植物直接吸收利用,只有通过化学或生物方法将空气中游离的氮气转化为含氮化合物才能被人类应用于食品或其他工业生产中,因此氮气的固定及转化已经逐渐成为新的研究热点。而氨是一种非常重要的无机化工产品,其在农业、医药、储能等行业中有着重要的作用,且需求量随着社会日益发展和人口的不断增加而不断增加。首先简单介绍了现有的氮气固定合成氨方法及其作用机理,随后重点综述了氮气电化学合成氨催化剂的研究现状,最后对氮气电化学合成氨催化剂的未来发展趋势进行了展望。
中图分类号:
王鲁丰, 钱鑫, 邓丽芳, 袁浩然. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863.
Lufeng WANG, Xin QIAN, Lifang DENG, Haoran YUAN. Recent progress on catalysts about electrochemical synthesis of ammonia from nitrogen[J]. CIESC Journal, 2019, 70(8): 2854-2863.
1 | JiaH P, QuadrelliE A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen[J]. Chemical Society Reviews, 2014, 43(2): 547-564. |
2 | KimJ, ReesD C. Structural models for the metal centers in the nitrogenase molybdenum-iron protein[J]. Science, 1992, 257(5077): 1677-1682. |
3 | EadyR R. Structure-function relationships of alternative nitrogenases[J]. Chemical Reviews, 1996, 96(7): 3013-3030. |
4 | HowardJ B, ReesD C. Structural basis of biological nitrogen fixation[J]. Chemical Reviews, 1996, 96(7): 2965-2982. |
5 | 肖瑶, 胡文娟, 任衍彪, 等. 仿生光电催化[J]. 化学进展, 2018, 30(4): 325-337. |
XiaoY, HuW J, RenY B, et al. Bioinspired photo/electrocatalytic N2 fixation[J]. Progress in Chemsitry, 2018, 30(4): 325-337. | |
6 | KlerkeA, ChristensenH C, NørskovJ K, et al. Ammonia for hydrogen storage:challenges and opportunities[J]. Journal of Materials Chemistry, 2008, 18(20): 2304-2310. |
7 | ZamfirescuC, DincerI. Using ammonia as a sustainable fuel[J]. Journal of Power Sources, 2008, 185(1): 459-465. |
8 | MontoyaJ H, TsaiC, VojvodicA, et al. The challenge of electrochemical ammonia synthesis:a new perspective on the role of nitrogen scaling relations[J]. ChemSusChem, 2015, 8(13): 2180-2186. |
9 | ChenJ G, CrooksR M, SeefeldtL C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611 |
10 | SclafaniA, AugugliaroV, SchiavelloM. Dinitrogen electrochemical reduction to ammonia over iron cathode in aqueous medium[J]. Journal of the Electrochemical Society 1983, 130(3): 734-736. |
11 | MarnellosG, StoukidesM. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100. |
12 | MurakamiT, NohiraT, GotoT, et al. Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure[J]. Electrochimica Acta, 2005, 50(27): 5423-5426. |
13 | KumarD, PalS, KrishnamurtyS. N2 activation on Al metal clusters: catalyzing role of BN-doped graphene support[J]. Physical Chemistry Chemical Physics, 2016, 18(40): 27721-27727. |
14 | ShilovA E. Catalytic reduction of molecular nitrogen in solutions[J]. Russian Chemical Bulletin, 2003, 52(12): 2555-2562. |
15 | ZhangS Y, ZhangX Y, ZhangZ S, et al. Electroreduction behavior of dinitrogen over ruthenium cathodic catalyst[J]. Chemistry Letters, 2003, 32(5): 440-441. |
16 | HamC J M V D, KoperM T M, HetterscheidD G. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
17 | ShipmanM A, SymesM D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68. |
18 | LiM Q, HuangH, LowJ X, et al. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction[J]. Small Methods, 2018, 1800388. |
19 | SkulasonE, BligaardT, GudmundsdottirS, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3):1235-1245. |
20 | ZhaoY X, ZhaoY F, ShiR, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm [J]. Advanced Materials , 2019, 31(16): e1806482. |
21 | AbghouiY, SkúlasonE. Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis[J]. The Journal of Physical Chemistry C, 2017, 121(11): 6141-6151. |
22 | KordaliV, KyriacouG, LambrouC. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chemical Communications, 2000, 17: 1673-1674. |
23 | RenX, ZhaoJ X, WeiQ, et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod [J]. ACS Central Science, 2019, 5(1): 116-121. |
24 | SheetsB L, BotteG G. Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte[J]. Chemical Communications, 2018, 54(34): 4250-4253. |
25 | BaoD, ZhangQ, MengF L, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2 /NH3 cycle[J]. Advanced Materials , 2017, 29(3): 1604799. |
26 | ShiM M, BaoD, WulanB R, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions[J]. Advanced Materials, 2017, 29(17): 1606550. |
27 | QinQ, HeilT, AntoniettiM, et al. Single‐site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen[J]. Small Methods, 2018, 2(12): 1800202. |
28 | ZhuX J, LiuZ C, WangH B, et al. Boosting electrocatalytic N2 reduction to NH3 on beta-FeOOH by fluorine doping[J]. Chemical Communications, 2019, 55(27): 3987-3990. |
29 | ChenH Y, ZhuX J, HuangH, et al. Sulfur dots-graphene nanohybrid: a metal-free electrocatalyst for efficient N2-to-NH3 fixation under ambient conditions[J]. Chemical Communications, 2019, 55(21): 3152-3155. |
30 | HuangH, XiaL, CaoR R, et al. A biomass-derived carbon-based electrocatalyst for efficient N2 fixation to NH3 under ambient conditions[J]. Chemistry-A European Journal, 2019, 25(8): 1914-1917. |
31 | WangZ, GongF, ZhangL, et al. Electrocatalytic hydrogenation of N2 to NH3 by MnO: experimental and theoretical investigations[J]. Advanced Science, 2019, 6(1): 1801182. |
32 | XiaL, LiB B, ZhangY, et al. Cr2O3 nanoparticle-reduced graphene oxide hybrid: a highly active electrocatalyst for N2 reduction at ambient conditions[J]. Inorganic Chemistry, 2019, 58(4): 2257-2260. |
33 | ZhangL L, DingL X, ChenG F, et al. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets[J]. Angewandte Chemie, 2019, 58(9): 2612-2616. |
34 | NashJ, YangX, AnibalJ, et al. Electrochemical nitrogen reduction reaction on noble metal catalysts in proton and hydroxide exchange membrane electrolyzers [J]. Journal of the Electrochemical Society, 2017, 164(14): F1712-F1716. |
35 | WangJ, YuL, HuL, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential [J]. Nature Communications, 2018, 9(1): 1795. |
36 | LanR, IrvineJ T S, TaoS W. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3: 1145. |
37 | BrownK A, HarrisD F, WilkerM B, et al. Light-driven dinitrogen reduction catalyzed by a CdSn itrogenase MoFe protein biohybrid[J]. Bioinorganic Chemistry, 2016, 352(6284): 448-451. |
38 | YaoY, ZhuS Q, WangH J, et al. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces[J]. Journal of the American Chemical Society, 2018, 140(4): 1496-1501. |
39 | WangZ Q, LiY H, YuH J, et al. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures[J]. ChemSusChem, 2018, 11(19):3480-3485. |
40 | JiangH L, LiuB, LanY Q, et al. From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake[J]. Journal of the American Chemical Society, 2011, 133(31): 11854-11857. |
41 | ShenK, ChenX D, ChenJ Y, et al. Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J]. ACS Catalysis, 2016, 6(9): 5887-5903. |
42 | WuG, SantandreuA, KelloggW, et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition[J]. Nano Energy, 2016, 29(S1): 83-110. |
43 | ZhangH G, OsgoodH, XieX H, et al. Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks[J]. Nano Energy, 2017, 31: 331-350. |
44 | ZhaoX R, YinF X, LiuN, et al. Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure[J]. Journal of Materials Science, 2017, 52(17): 10175-10185. |
45 | LeeH K, KohC S L, LeeY H, et al. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach[J]. Science Advances, 2018, 4(3): 3208-3216. |
46 | GengZ G, LiuY, KongX D, et al. Achieving a record-high yield rate of 120.9 μgNH3·mgcat.-1·h-1 for N2 electrochemical reduction over Ru single-atom catalysts[J]. Advanced Materials, 2018, 30(40): e1803498. |
47 | MacleodK C, HollandP L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron[J]. Nature Chemistry, 2013, 5(7): 559-565. |
48 | BhattacharyaP, ProkopchukD E, MockM T. Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia[J]. Coordination Chemistry Reviews, 2017, 334(S1): 67-83. |
49 | RenX, CuiG W, ChenL, et al. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst[J]. Chemical Communications, 2018, 54(61): 8474-8477. |
50 | EizawaA, ArashibaK, TanakaH, et al. Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation[J]. Nature Communications, 2017, 8: 14874. |
51 | HanJ R, JiX Q, RenX, et al. MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3[J]. Journal of Materials Chemistry A, 2018, 6(27): 12974-12977. |
52 | ZhangL, JiX Q, RenX, et al. Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9550-9554. |
53 | YangD S, ChenT, WangZ J. Electrochemical reduction of aqueous N2 electrochemical reduction at low overpotential on (110)-oriented Mo nanofilm[J]. Journal of Materials Chemistry A, 2017, 5(36): 18967-18971. |
54 | LiX H, LiT S, MaY J, et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nano flower[J]. Advanced Energy Materials, 2018, 8(30): 1801357. |
55 | ChengH, DingL X, ChenG F, et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Advanced Materials, 2018, 30(46): 1803694. |
56 | RennerJ N, GreenleeL F, AyresK E, et al. Electrochemical synthesis of ammonia: a low pressure, low temperature approach[J]. The Electrochemical Society Interface, 2015, 24(2): 51-57. |
57 | ChenS M, PerathonerS, AmpelliC, et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst[J]. Angewandte Chemie International Edition, 2017, 56(10): 2699-2703. |
58 | ZhaoX H, LanX, YuD K, et al. Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions[J]. Chemical Communications, 2018, 54(92): 13010-13013. |
59 | LuoY R, ChenG F, DingL, et al. Efficient electrocatalytic N2 fixation with MXene under ambient conditions[J]. Joule, 2019, 3(1): 279-289. |
60 | LiS, TuoP, XieJ F, et al. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution[J]. Nano Energy, 2018, 47: 512-518. |
61 | AzofraL M, LiN, MacFarlaneD R, et al. Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia[J]. Energy & Environmental Science, 2016, 9(8): 2545-2549. |
62 | ZhaoJ X, ZhangL, XieX Y, et al. Ti3C2Tx (T = F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3[J]. Journal of Materials Chemistry A, 2018, 6(47): 24031-24035. |
63 | ZhangL L, XiaoJ, WangH Y, et al. Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions[J]. ACS Catalysis, 2017, 7(11): 7855-7865. |
64 | ChenG F, CaoX R, WuS Q, et al. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy [J]. Journal of the American Chemical Society, 2017, 139(29): 9771-9774. |
65 | ShindeS S, SamiA, LeeJ H. Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se [J]. Journal of Materials Chemistry A, 2015, 3(24): 12810-12819. |
66 | ZhangL L, LiuW, DouY B, et al. The role of transition metal and nitrogen in metal-N-C composites for hydrogen evolution reaction at universal pHs[J]. The Journal of Physical Chemistry C, 2016, 120(51): 29047-29053. |
67 | LiR, WeiZ D, GouX L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution[J]. ACS Catalysis, 2015, 5(7): 4133-4142. |
68 | SongY F, ChenW, ZhaoC C, et al. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol[J]. Angewandte Chemie International Edition, 2017, 56(36): 10840-10844. |
69 | ZhaoS N, SongX Z, SongS Y, et al. Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors[J]. Coordination Chemistry Reviews, 2017, 337: 80-96. |
70 | LiuY M, SuY, QuanX, et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon[J]. ACS Catalysis, 2018, 8(2): 1186-1191. |
71 | MukherjeeS, CullenD A, KarakalosS, et al. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes[J]. Nano Energy, 2018, 48: 217-226. |
72 | OhmsD, HerzogS, FrankeR, et al. Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile[J]. Journal of Power Sources, 1992, 38(3): 327-334. |
73 | JuW, BaggerA, HaoG P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications, 2017, 8: 944. |
74 | TianY H, HuS L, ShengX L, et al. Non-transition-metal catalytic system for N2 reduction to NH3: a density functional theory study of Al-doped graphene[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 570-576. |
75 | ShiM M, BaoD, LiS J, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution[J]. Advanced Energy Materials, 2018, 8(21): 1800124. |
76 | XiaL, YangJ J, WangH B, et al. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation[J]. Chemical Communications, 2019, 55(23): 3371-3374. |
77 | WuT T, LiP P, WangH B, et al. Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N2-to-NH3 fixation under ambient conditions[J]. Chemical Communications, 2019, 55(18): 2684-2687. |
78 | McEnaneyJ M, SinghA R, SchwalbeJ A, et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure[J]. Energy & Environmental Science, 2017, 10(7): 1621-1630. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[12] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[13] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[14] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[15] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 923
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 762
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||