化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2564-2585.DOI: 10.11949/0438-1157.20200107
收稿日期:
2020-02-03
修回日期:
2020-04-08
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
胡宝山
作者简介:
金燕(1989—),女,硕士研究生,实验师,基金资助:
Yan JIN1(),Qian YANG2,Wenbin ZHAO1,Baoshan HU1()
Received:
2020-02-03
Revised:
2020-04-08
Online:
2020-06-05
Published:
2020-06-05
Contact:
Baoshan HU
摘要:
石墨烯的化学气相沉积(CVD)法制备是一个复杂的多相催化反应过程。如何从催化反应角度理解此过程中的诸多科学问题对石墨烯的精准结构控制以及石墨烯产品的标准化和实用化至关重要。结合最新研究进展,系统分析了CVD反应体系所包含的碳源、反应气氛、催化金属及其内部碳杂质、反应中间碳物种对石墨烯生长的热、动力学以及石墨烯宏、微观结构特性(层数、质量、形状、晶畴等)的影响机制和调控策略,挖掘不同石墨烯CVD反应体系背后的共性科学规律。简介了增强型CVD技术的发展,展望和建议基元反应步骤和含碳反应中间物种对于石墨烯控制制备的重要作用,为未来无缺陷、超洁净、低成本、快速、宏量化的大面积石墨烯薄膜及特定石墨烯衍生结构的定制化制备提供参考。
中图分类号:
金燕, 杨倩, 赵文斌, 胡宝山. 石墨烯化学气相沉积法可控制备的催化反应体系研究[J]. 化工学报, 2020, 71(6): 2564-2585.
Yan JIN, Qian YANG, Wenbin ZHAO, Baoshan HU. Catalytic reaction system for controllable synthesis of graphene with chemical vapor deposition[J]. CIESC Journal, 2020, 71(6): 2564-2585.
1 | Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. |
2 | Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. |
3 | Stauber T, Peres N M R, Geim A K. Optical conductivity of graphene in the visible region of the spectrum[J]. Physical Review B, 2008, 78(8): 085432. |
4 | Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
5 | Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 2008, 100(1): 016602. |
6 | Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. |
7 | Partoens B, Peeters F M. From graphene to graphite: electronic structure around the K point[J]. Physical Review B, 2006, 74(7): 075404. |
8 | Oostinga J B, Heersche H B, Liu X, et al. Gate-induced insulating state in bilayer graphene devices[J]. Nature Materials, 2008, 7(2): 151-157. |
9 | Alexeev E M, Ruiz-Tijerina D A, Danovich M, et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 81-86. |
10 | Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. |
11 | Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84. |
12 | Somani P R, Somani S P, Umeno M. Planer nano-graphenes from camphor by CVD[J]. Chemical Physics Letters, 2006, 430(1/2/3): 56-59. |
13 | Nield D, Kuznetsov A. Forced convection with slip-flow in a channel or duct occupied by a hyperporous medium saturated by a rarefied gas[J]. Transport in Porous Media, 2006, 64(2): 161-170. |
14 | Xu K, Li Z. Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions[J]. Journal of Fluid Mechanics, 2004, 513: 87-110. |
15 | Bong H, Jo S B, Kang B, et al. Graphene growth under Knudsen molecular flow on a confined catalytic metal coil[J]. Nanoscale, 2015, 7(4): 1314-1324. |
16 | Lewis A M, Derby B, Kinloch I A. Influence of gas phase equilibria on the chemical vapor deposition of graphene[J]. ACS Nano, 2013, 7(4): 3104-3117. |
17 | Li G, Huang S H, Li Z. Gas-phase dynamics in graphene growth by chemical vapour deposition[J]. Physical Chemistry Chemical Physics, 2015, 17(35): 22832-22836. |
18 | Zhang X, Wang L, Xin J, et al. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface[J]. Journal of the American Chemical Society, 2014, 136(8): 3040-3047. |
19 | Hao Y, Bharathi M, Wang L, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342(6159): 720-723. |
20 | Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters, 2009, 9(12): 4268-4272. |
21 | Wu T, Zhang X, Yuan Q, et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys[J]. Nature Materials, 2016, 15(1): 43-47. |
22 | Ma T, Liu Z, Wen J, et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering[J]. Nature Communications, 2017, 8: 14486. |
23 | Braeuninger-Weimer P, Brennan B, Pollard A J, et al. Understanding and controlling Cu-catalyzed graphene nucleation: the role of impurities, roughness, and oxygen scavenging[J]. Chemistry of Materials, 2016, 28(24): 8905-8915. |
24 | Li Z, Zhang W, Fan X, et al. Graphene thickness control via gas-phase dynamics in chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2012, 116(19): 10557-10562. |
25 | Shu H, Tao X M, Ding F. What are the active carbon species during graphene chemical vapor deposition growth?[J]. Nanoscale, 2015, 7(5): 1627-1634. |
26 | Ago H, Ogawa Y, Tsuji M, et al. Catalytic growth of graphene: toward large-area single-crystalline graphene[J]. The Journal of Physical Chemistry Letters, 2012, 3(16): 2228-2236. |
27 | Zhang X, Ning J, Li X, et al. Hydrogen-induced effects on the CVD growth of high-quality graphene structures[J]. Nanoscale, 2013, 5(18): 8363-8366. |
28 | Choi J H, Li Z, Cui P, et al. Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force[J]. Scientific Reports, 2013, 3: 1925. |
29 | Li Z, Wu P, Wang C, et al. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources[J]. ACS Nano, 2011, 5(4): 3385-3390. |
30 | Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. |
31 | Gao L, Guest J R, Guisinger N P. Epitaxial graphene on Cu(111)[J]. Nano Letters, 2010, 10(9): 3512-3516. |
32 | Yang M, Sasaki S, Suzuki K, et al. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene[J]. Applied Surface Science, 2016, 366: 219-226. |
33 | Wirtz C, Lee K, Hallam T, et al. Growth optimisation of high quality graphene from ethene at low temperatures[J]. Chemical Physics Letters, 2014, 595: 192-196. |
34 | Molina-Jiron C, Chellali M R, Kumar C N S, et al. Direct conversion of CO2 to multi-layer graphene using Cu-Pd alloys[J]. ChemSusChem, 2019, 12(15): 3509-3514. |
35 | Faggio G, Capasso A, Messina G, et al. High-temperature growth of graphene films on copper foils by ethanol chemical vapor deposition[J].The Journal of Physical Chemistry C, 2013, 117(41): 21569-21576. |
36 | Gadipelli S, Calizo I, Ford J, et al. A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol[J]. Journal of Materials Chemistry, 2011, 21(40): 16057-16065. |
37 | Jang J, Son M, Chung S, et al. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure[J]. Scientific Reports, 2015, 5: 17955. |
38 | Coraux J, diaye A T N, Busse C, et al. Structural coherency of graphene on Ir(111)[J]. Nano Letters, 2008, 8(2): 565-570. |
39 | Ji H, Hao Y, Ren Y, et al. Graphene growth using a solid carbon feedstock and hydrogen[J]. ACS Nano, 2011, 5(9): 7656-7661. |
40 | Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources[J]. Nature, 2010, 468(7323): 549-552. |
41 | Wu T, Ding G, Shen H, et al. Triggering the continuous growth of graphene toward millimeter-sized grains[J]. Advanced Functional Materials, 2013, 23(2): 198-203. |
42 | Yang Q, Hu B, Jin Y, et al. Regulating surficial catalysis mechanism of copper metal by manipulating reactive intermediate for growth of homogenous bernal-stacked bilayer graphene[J]. Advanced Materials Interfaces, 2017, 4(17): 1700415. |
43 | Losurdo M, Giangregorio M M, Capezzuto P, et al. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure[J]. Physical Chemistry Chemical Physics, 2011, 13(46): 20836-20843. |
44 | Katz L, Guinan M, Borg R J. Diffusion of H2, D2, and T2 in single-crystal Ni and Cu[J]. Physical Review B: Solid State, 1971, 4(2): 330-341. |
45 | Akhtar F, Dabrowski J, Lisker M, et al. Large-scale chemical vapor deposition of graphene on polycrystalline nickel films: effect of annealing conditions[J]. Thin Solid Films, 2019, 690: 137565. |
46 | Shin Y C, Kong J. Hydrogen-excluded graphene synthesis via atmospheric pressure chemical vapor deposition[J]. Carbon, 2013, 59: 439-447. |
47 | Jung D H, Kang C, Kim M, et al. Effects of hydrogen partial pressure in the annealing process on graphene growth[J]. The Journal of Physical Chemistry C, 2014, 118(7): 3574-3580. |
48 | Wang H, Wang G, Bao P, et al. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation[J]. Journal of the American Chemical Society, 2012, 134(8): 3627-3630. |
49 | Yang F, Liu Y, Wu W, et al. A facile method to observe graphene growth on copper foil[J]. Nanotechnology, 2012, 23(47): 475705. |
50 | Ibrahim A, Akhtar S, Atieh M, et al. Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition[J]. Carbon, 2015, 94: 369-377. |
51 | Hu B, Jin Y, Guan D, et al. H2-dependent carbon dissolution and diffusion-out in graphene chemical vapor deposition growth[J]. The Journal of Physical Chemistry C, 2015, 119(42): 24124-24131. |
52 | Jin Y, Hu B, Wei Z, et al. Roles of H2 in annealing and growth times of graphene CVD synthesis over copper foil[J]. Journal of Materials Chemistry A, 2014, 2(38): 16208-16216. |
53 | Wu B, Geng D, Xu Z, et al. Self-organized graphene crystal patterns[J]. NPG Asia Materials, 2013, 5: e36. |
54 | Yan Z, Liu Y, Lin J, et al. Hexagonal graphene onion rings[J]. Journal of the American Chemical Society, 2013, 135(29): 10755-10762. |
55 | Han G H, Guenes F, Bae J J, et al. Influence of copper morphology in forming nucleation seeds for graphene growth[J]. Nano Letters, 2011, 11(10): 4144-4148. |
56 | Jacobberger R M, Arnold M S. Graphene growth dynamics on epitaxial copper thin films[J]. Chemistry of Materials, 2013, 25(6): 871-877. |
57 | Vlassiouk I, Regmi M, Fulvio P F, et al. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene[J]. ACS Nano, 2011, 5(7): 6069-6076. |
58 | Mitchell I, Page A J. The influence of hydrogen on transition metal-catalysed graphene nucleation[J]. Carbon, 2018, 128: 215-223. |
59 | Liu L, Zhou H, Cheng R, et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene[J]. ACS Nano, 2012, 6(9): 8241-8249. |
60 | Liu Q, Gong Y, Wilt J S, et al. Synchronous growth of AB-stacked bilayer graphene on Cu by simply controlling hydrogen pressure in CVD process[J]. Carbon, 2015, 93: 199-206. |
61 | Li X, Magnuson C W, Venugopal A, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper[J]. Journal of the American Chemical Society, 2011, 133(9): 2816-2819. |
62 | Li K, He C, Jiao M, et al. A first-principles study on the role of hydrogen in early stage of graphene growth during the CH4 dissociation on Cu(111) and Ni(111) surfaces[J]. Carbon, 2014, 74: 255-265. |
63 | Jung D H, Kang C, Yoon D, et al. Anisotropic behavior of hydrogen in the formation of pentagonal graphene domains[J]. Carbon, 2015, 89: 242-248. |
64 | Choubak S, Levesque P L, Gaufres E, et al. Graphene CVD: interplay between growth and etching on morphology and stacking by hydrogen and oxidizing impurities[J]. The Journal of Physical Chemistry C, 2014, 118(37): 21532-21540. |
65 | Yang X, Hu B, Jin Y, et al. Insight into CO2 etching behavior for efficiently nanosizing graphene[J]. Advanced Materials Interfaces, 2017, 4(10): 1601065. |
66 | Strudwick A J, Weber N E, Schwab M G, et al. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres[J]. ACS Nano, 2015, 9(1): 31-42. |
67 | Zhang J, Ha K, Lin L, et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide[J]. Angewandte Chemie-International Edition, 2019, 58(41): 14446-14451. |
68 | Hao Y, Wang L, Liu Y, et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene[J]. Nature Nanotechnology, 2016, 11(5): 426-431. |
69 | Kraus J, Boebel L, Zwaschka G, et al. Understanding the reaction kinetics to optimize graphene growth on Cu by chemical vapor deposition[J]. Annalen Der Physik, 2017, 529(11): 1700029. |
70 | Lin L, Sun L, Zhang J, et al. Rapid growth of large single-crystalline graphene via second passivation and multistage carbon supply[J]. Advanced Materials, 2016, 28(23): 4671-4677. |
71 | Zhou H, Yu W J, Liu L, et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene[J]. Nature Communications, 2013, 4: 2096. |
72 | Rasool H I, Song E B, Allen M J, et al. Continuity of graphene on polycrystalline copper[J]. Nano Letters, 2011, 11(1): 251-256. |
73 | Rasool H I, Song E B, Mecklenburg M, et al. Atomic-scale characterization of graphene grown on copper (100) single crystals[J]. Journal of the American Chemical Society, 2011, 133(32): 12536-12543. |
74 | Nie S, Wofford J M, Bartelt N C, et al. Origin of the mosaicity in graphene grown on Cu(111)[J]. Physical Review B, 2011, 84(15): 155425. |
75 | Luo Z, Lu Y, Singer D W, et al. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure[J]. Chemistry of Materials, 2011, 23(6): 1441-1447. |
76 | Griep M H, Sandoz-Rosado E, Tumlin T M, et al. Enhanced graphene mechanical properties through ultrasmooth copper growth substrates[J]. Nano Letters, 2016, 16(3): 1657-1662. |
77 | Kim S M, Hsu A, Lee Y H, et al. The effect of copper pre-cleaning on graphene synthesis[J]. Nanotechnology, 2013, 24(36): 365602. |
78 | Hayashi K, Sato S, Ikeda M, et al. Selective graphene formation on copper twin crystals[J]. Journal of the American Chemical Society, 2012, 134(30): 12492-12498. |
79 | Vlassiouk I, Smirnov S, Regmi M, et al. Graphene nucleation density on copper: fundamental role of background pressure[J]. The Journal of Physical Chemistry C, 2013, 117(37): 18919-18926. |
80 | Tian J, Hu B, Wei Z, et al. Surface structure deduced differences of copper foil and film for graphene CVD growth[J]. Applied Surface Science, 2014, 300: 73-79. |
81 | Hu B, Ago H, Orofeo C M, et al. On the nucleation of graphene by chemical vapor deposition[J]. New Journal of Chemistry, 2012, 36(1): 73-77. |
82 | Wood J D, Schmucker S W, Lyons A S, et al. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition[J]. Nano Letters, 2011, 11(11): 4547-4554. |
83 | Geng D, Gao E, Wang H, et al. Large-area growth of five-lobed and triangular graphene grains on textured Cu substrate[J]. Advanced Materials Interfaces, 2016, 3(18): 1600347. |
84 | Hu B, Ago H, Ito Y, et al. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD[J]. Carbon, 2012, 50(1): 57-65. |
85 | Ogawa Y, Hu B, Orofeo C M, et al. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 219-226. |
86 | Hu B, Wei Z, Ago H, et al. Effects of substrate and transfer on CVD-grown graphene over sapphire-induced Cu films[J]. Science China Chemistry, 2014, 57(6): 895-901. |
87 |
Hou Y, Wang B, Zhan L, et al. Surface crystallographic structure insensitive growth of oriented graphene domains on Cu substrates[J]. Materials Today, 2020, DOI: 10.1016/j.mattod.2019.12.001.
DOI URL |
88 | Magnuson C W, Kong X, Ji H, et al. Copper oxide as a “self-cleaning” substrate for graphene growth[J]. Journal of Materials Research, 2014, 29(3): 403-409. |
89 | Luo D, Wang M, Li Y, et al. Adlayer-free large-area single crystal graphene grown on a Cu(111) foil[J]. Advanced Materials, 2019, 31(35): 1903615. |
90 | Çelik Y, Escoffier W, Yang M, et al. Relationship between heating atmosphere and copper foil impurities during graphene growth via low pressure chemical vapor deposition[J]. Carbon, 2016, 109: 529-541. |
91 | Pang J, Bachmatiuk A, Fu L, et al. Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2015, 119(23): 13363-13368. |
92 | Zhao W, Hu B, Yang Q, et al. Synergetic interaction between copper and carbon impurity induces low temperature growth of highly-defective graphene for enhanced electrochemical performance[J]. Carbon, 2019, 150: 371-377. |
93 | Meca E, Lowengrub J, Kim H, et al. Epitaxial graphene growth and shape dynamics on copper: phase-field modeling and experiments[J]. Nano Letters, 2013, 13(11): 5692-5697. |
94 | Holmen A, Olsvik O, Rokstad O. Pyrolysis of natural gas: chemistry and process concepts[J]. Fuel Processing Technology, 1995, 42(2/3): 249-267. |
95 | Zhang W, Wu P, Li Z, et al. First-principles thermodynamics of graphene growth on Cu surfaces[J]. The Journal of Physical Chemistry C, 2011, 115(36): 17782-17787. |
96 | Liang T, Luan C, Chen H, et al. Exploring oxygen in graphene chemical vapor deposition synthesis[J]. Nanoscale, 2017, 9(11): 3719-3735. |
97 | Habib M R, Liang T, Yu X, et al. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen[J]. Reports on Progress in Physics, 2018, 81(3): 036501. |
98 | Li K, He C, Jiao M, et al. Theoretical insights on the C2Hy formation mechanism during CH4 dissociation on Cu(100) surface[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17662-17669. |
99 | Oberg H, Nestsiarenka Y, Matsuda A, et al. Adsorption and cyclotrimerization kinetics of C2H2 at a Cu(110) surface[J]. The Journal of Physical Chemistry C, 2012, 116(17): 9550-9560. |
100 | Treier M, Pignedoli C A, Laino T, et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes[J]. Nature Chemistry, 2011, 3(1): 61-67. |
101 | van de Walle C G, Neugebauer J. First-principles surface phase diagram for hydrogen on GaN surfaces[J]. Physical Review Letters, 2002, 88(6): 066103 |
102 | Patera L L, Africh C, Weatherup R S, et al. In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth[J]. ACS Nano, 2013, 7(9): 7901-7912. |
103 | Yan K, Peng H, Zhou Y, et al. Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition[J]. Nano Letters, 2011, 11(3): 1106-1110. |
104 | Mandeltort L, Choudhury P, Johnson J K, et al. Reaction of the basal plane of graphite with the methyl radical[J]. The Journal of Physical Chemistry Letters, 2012, 3(12): 1680-1683. |
105 | Song Y, Zhuang J, Song M, et al. Epitaxial nucleation of CVD bilayer graphene on copper[J]. Nanoscale, 2016, 8(48): 20001-20007. |
106 | Yan Z, Lin J, Peng Z, et al. Toward the synthesis of wafer-scale single-crystal graphene on copper foils[J]. ACS Nano, 2012, 6(10): 9110-9117. |
107 | Reina A, Thiele S, Jia X, et al. Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces[J]. Nano Research, 2009, 2(6): 509-516. |
108 | Maruyama S, Kojima R, Miyauchi Y, et al. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol[J]. Chemical Physics Letters, 2002, 360(3/4): 229-234. |
109 | Sun Y, Yang L, Xia K, et al. “Snowing” graphene using microwave ovens[J]. Advanced Materials, 2018, 30(40): 1803189. |
110 | Wang M, Tang M, Chen S, et al. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery[J]. Advanced Materials, 2017, 29(47): 1703882. |
111 | Wang M, Yang H, Wang K, et al. Quantitative analyses of the interfacial properties of current collector at the mesoscopic level in lithium ion battery by using hierarchical graphene[J]. Nano Letters, 2020, 20(3): 2175-2182. |
112 | Park J, Xiong W, Gao Y, et al. Fast growth of graphene patterns by laser direct writing[J]. Applied Physics Letters, 2011, 98(12): 123109. |
113 | Tu R, Liang Y, Zhang C, et al. Fast synthesis of high-quality large-area graphene by laser CVD[J]. Applied Surface Science, 2018, 445: 204-210. |
114 | Luong D X, Bets K V, Algozeeb W A, et al. Gram-scale bottom-up flash graphene synthesis[J]. Nature, 2020, 577(7792): 647-651. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[6] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[7] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[8] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[9] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[14] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[15] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||