化工学报

• •    

基于PBM的离心式叶轮内气泡破碎合并数值模拟

师毓辉1,2(), 邢继远1,2, 姜雪晗1,3, 叶爽1,2,3(), 黄伟光1,2,3   

  1. 1.中国科学院上海高等研究院,上海 201210
    2.中国科学院大学,北京 100049
    3.上海科技大学,上海 201210
  • 收稿日期:2023-12-01 修回日期:2024-02-02 出版日期:2024-03-21
  • 通讯作者: 叶爽
  • 作者简介:师毓辉(1999—),男,硕士研究生,shiyh@sari.ac.cn
  • 基金资助:
    国家重点研发计划项目:政府间国际科技创新合作(2019YFE0122100)

Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM

Yuhui SHI1,2(), Jiyuan XING1,2, Xuehan JIANG1,3, Shuang YE1,2,3(), Weiguang HUANG1,2,3   

  1. 1.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Shanghai Tech University, Shanghai 201210, China
  • Received:2023-12-01 Revised:2024-02-02 Online:2024-03-21
  • Contact: Shuang YE

摘要:

针对利用离心泵制备微气泡时叶轮内气泡尺寸较大且分布不均问题,探究不同入口含气率(IGVF)和转速对离心泵叶轮内气泡直径和分布影响,采用欧拉-欧拉非均匀双流体模型与群体平衡模型进行耦合,求解离心泵叶轮内气液两相旋转流场,并且结合涡识别方法、Luo破碎合并模型对离心泵叶轮内气泡分布规律进行分析。结果表明: 1.叶片前缘以及吸力面附近存在的涡旋导致气体聚集,引起流道内局部含气率增大,此处气泡合并效应占主导;2.流量和转速一定时,随IGVF的增加,流道内湍流强度增加,漩涡后移导致气相聚集区域同样向后延伸,吸力面的高局部含气率区域增大面积显著高于压力面,因此吸力面气泡合并行为更为显著,气泡直径更大;3.IGVF和流量一定时,小范围内提升转速可以使气泡破碎效应增强,获得更小直径的气泡。

关键词: 气液两相流, 计算流体力学, 群体平衡模型, 微气泡, 粒度分布

Abstract:

In addressing the issue of larger and unevenly distributed bubble sizes within the impeller during the preparation of microbubbles using a centrifugal pump, this study investigates the impact of different Inlet Gas Volume Fractions (IGVF) and rotational speeds on the diameter and distribution of bubbles within the impeller. The Euler-Euler non-uniform two-fluid model is coupled with the population balance model to solve the rotating two-phase flow field within the impeller of the centrifugal pump. Additionally, vortex identification methods and the Luo fragmentation and coalescence model are employed to analyze the distribution patterns of bubbles within the impeller. The results indicate the following:1.Vortices near the leading edge and the suction side of the blades cause gas accumulation, leading to an increase in local gas volume fraction within the flow channel. The dominant effect in this region is the coalescence of bubbles.2. Keeping flow rate and rotation speed constant, an increase in IGVF results in heightened turbulence intensity in the flow channel. This, in turn, causes the backward movement of vortices, extending the gas phase aggregation area backward. The region of high local gas content on the suction surface significantly surpasses that on the pressure surface. Consequently, the bubble merging behavior on the suction surface becomes more pronounced, resulting in larger bubble diameters.3. Maintaining constant IGVF and flow rate, a slight increase in speed enhances the bubble-breaking effect, leading to smaller bubble diameters.

Key words: gas-liquid flow, computational fluid dynamics, CFD, population balance model, PBM, microbubbles, size distribution

中图分类号: