化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3752-3762.DOI: 10.11949/0438-1157.20240400
收稿日期:
2024-04-10
修回日期:
2024-06-19
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
郭航
作者简介:
于瑞佼(1992—),女,博士后,yuruijiao@bjut.edu.cn
基金资助:
Ruijiao YU(), Hang GUO(
), Fang YE, Hao CHEN
Received:
2024-04-10
Revised:
2024-06-19
Online:
2024-10-25
Published:
2024-11-04
Contact:
Hang GUO
摘要:
气体扩散层是质子交换膜燃料电池的关键部件,在电池内用于支撑和保护质子交换膜和催化剂层,并且为电子传导和气体输运提供通道。孔隙率作为扩散层主要参数,其大小影响扩散层特性,最终影响电池性能。所以,为获得较有利的孔隙率,本文建立三维全电池结块模型,计算定值及沿不同方向阶梯型变化孔隙率对电池性能的影响,并且计算不同电压下对应的最佳孔隙率值。结果表明,增大孔隙率可明显提升浓差极化区电池性能,但是会降低欧姆极化区性能。沿流动方向孔隙率增加可改善电池性能,但是孔隙率变化幅度不宜过大,从脊下到流道下孔隙增加可提升电池性能。不同电压下使得电流密度最大时对应的孔隙率不同,且随电压增加而降低,0.2 V时电流密度可提升5.28%。
中图分类号:
于瑞佼, 郭航, 叶芳, 陈浩. 扩散层孔隙率对燃料电池性能的影响[J]. 化工学报, 2024, 75(10): 3752-3762.
Ruijiao YU, Hang GUO, Fang YE, Hao CHEN. Effect of gas diffusion layer porosity on fuel cell performance[J]. CIESC Journal, 2024, 75(10): 3752-3762.
1 | 刘舜, 徐洪涛, 张拴羊, 等. 扩散层孔隙率对PEMFC性能影响的模拟研究[J]. 热能动力工程, 2021, 36(7): 122-128. |
Liu S, Xu H T, Zhang S Y, et al. Simulation study on the effect of diffusion layer porosity on PEMFC performance[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(7): 122-128. | |
2 | Jha V, Hariharan R, Krishnamurthy B. A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120311. |
3 | Zhang S Y, Liu S, Xu H T, et al. Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design[J]. Energy, 2022, 239: 122102. |
4 | Xia L C, Ni M, He Q J, et al. Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity[J]. Applied Energy, 2021, 300: 117357. |
5 | Carcadea E, Varlam M, Ismail M, et al. PEM fuel cell performance improvement through numerical optimization of the parameters of the porous layers[J]. International Journal of Hydrogen Energy, 2020, 45(14): 7968-7980. |
6 | Jang J H, Yan W M, Shih C C. Numerical study of reactant gas transport phenomena and cell performance of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2006, 156(2): 244-252. |
7 | 张智明, 沈哲民, 商亚鹏, 等. 基于GDL非一致孔隙率的PEMFC模拟仿真[J]. 华南理工大学学报(自然科学版), 2017, 45(8): 35-41. |
Zhang Z M, Shen Z M, Shang Y P, et al. Simulation of PEMFC based on non-uniform porosity of GDL[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45(8): 35-41. | |
8 | 刘青山, 兰凤崇, 陈吉清, 等. 多孔层的孔隙特性和各向异性对燃料电池瞬态性能的影响[J]. 机械工程学报, 2022, 58(22): 90-105. |
Liu Q S, Lan F C, Chen J Q, et al. Effect of pore characteristics and anisotropy of porous layer on the transient performance of fuel cell [J]. Journal of Mechanical Engineering, 2022, 58(22): 90-105. | |
9 | 詹志刚, 张永生, 肖金生, 等. 具有梯度结构扩散层的质子交换膜燃料电池性能研究[J]. 西安交通大学学报, 2008, 42(6): 770-773+787. |
Zhan Z G, Zhang Y S, Xiao J S, et al. Research on proton exchange membrane fuel cell with gradient gas diffusion layer [J]. Journal of Xi'an Jiaotong University, 2008, 42(6): 770-773+787. | |
10 | 程植源, 周荣良, 李嘉颀, 等. 气体扩散层孔隙率梯度对质子交换膜燃料电池水管理的影响[J]. 内燃机与动力装置, 2022, 39(3): 41-47. |
Cheng Z Y, Zhou R L, Li J Q, et al. Effect of porosity gradient of gas diffusion layer on water management of PEMFC[J]. Internal Combustion Engine & Powerplant, 2022, 39(3): 41-47. | |
11 | Kanchan B K, Randive P, Pati S. Numerical investigation of multi-layered porosity in the gas diffusion layer on the performance of a PEM fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21836-21847. |
12 | Kanchan B K, Randive P, Pati S. Implications of non-uniform porosity distribution in gas diffusion layer on the performance of a high temperature PEM fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18571-18588. |
13 | Lim I S, Park J Y, Kang D G, et al. Numerical study for in-plane gradient effects of cathode gas diffusion layer on PEMFC under low humidity condition[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19745-19760. |
14 | Zhan Z G, Xiao J S, Li D Y, et al. Effects of porosity distribution variation on the liquid water flux through gas diffusion layers of PEM fuel cells[J]. Journal of Power Sources, 2006, 160(2): 1041-1048. |
15 | Huang Y X, Cheng C H, Wang X D, et al. Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells[J]. Energy, 2010, 35(12): 4786-4794. |
16 | Ma X, Zhang X Q, Yang J P, et al. Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells[J]. Energy Conversion and Management, 2021, 227: 113579. |
17 | Lin H H, Cheng C H, Soong C Y, et al. Optimization of key parameters in the proton exchange membrane fuel cell[J]. Journal of Power Sources, 2006, 162(1): 246-254. |
18 | 杨兴林, 冯娟. 船用动力氢燃料电池扩散层孔隙率的仿真研究[J]. 船舶工程, 2018, 40(S1): 363-367. |
Yang X L, Feng J. Simulation study on porosity of diffusion layer of marine hydrogen fuel cell[J]. Ship Engineering, 2018, 40(S1): 363-367. | |
19 | 张竹茜, 张欣欣, 于帆. PEMFC电极孔隙率的优化研究[J]. 热科学与技术, 2006, 5(2): 106-111. |
Zhang Z Q, Zhang X X, Yu F. Optimizing effects of diffusion layer porosity on PEMFC[J]. Journal of Thermal Science and Technology, 2006, 5(2): 106-111. | |
20 | Abraham B P, Murugavel K K. Influence of catalyst layer and gas diffusion layer porosity in proton exchange membrane fuel cell performance[J]. Electrochimica Acta, 2021, 389: 138793. |
21 | Chen H, Guo H, Ye F, et al. Forchheimer's inertial effect on liquid water removal in proton exchange membrane fuel cells with baffled flow channels[J]. International Journal of Hydrogen Energy, 2021, 46(3): 2990-3007. |
22 | Chen H, Guo H, Ye F, et al. A numerical study of baffle height and location effects on mass transfer of proton exchange membrane fuel cells with orientated-type flow channels[J]. International Journal of Hydrogen Energy, 2021, 46(10): 7528-7545. |
23 | Cao T F, Lin H, Chen L, et al. Numerical investigation of the coupled water and thermal management in PEM fuel cell[J]. Applied Energy, 2013, 112: 1115-1125. |
24 | Ye Q, van Nguyen T. Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions[J]. Journal of the Electrochemical Society, 2007, 154(12): B1242. |
25 | Yang X G, Ye Q, Cheng P. Matching of water and temperature fields in proton exchange membrane fuel cells with non-uniform distributions[J]. International Journal of Hydrogen Energy, 2011, 36(19): 12524-12537. |
26 | Wang Y L, Wang X A, Fan Y Z, et al. Numerical investigation of tapered flow field configurations for enhanced polymer electrolyte membrane fuel cell performance[J]. Applied Energy, 2022, 306: 118021. |
27 | Yu R J, Guo H, Ye F. Study on transmission coefficients anisotropy of gas diffusion layer in a proton exchange membrane fuel cell[J]. Electrochimica Acta, 2022, 414: 140163. |
28 | Xing L, Liu X T, Alaje T, et al. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell[J]. Energy, 2014, 73: 618-634. |
29 | Chen H, Guo H, Ye F, et al. Experimental investigations on cell performance of proton exchange membrane fuel cells with orientated-type flow channels[J]. Journal of Energy Engineering, 2020, 146(6): 04020062. |
30 | Bruggeman V. Calculation of various physics constants in heterogenous substances ( Ⅰ ) : Dielectric constants and conductivity of mixed bodies from isotropic substances[J]. Annals of Physics, 1935, 24(7): 636-664. |
31 | Yu R J, Guo H, Chen H, et al. Influence of different parameters on PEM fuel cell output power: a three-dimensional simulation using agglomerate model[J]. Energy Conversion and Management, 2023, 280: 116845. |
[1] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[2] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[3] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[4] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[5] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[6] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[7] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[8] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[9] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[10] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[11] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[12] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[13] | 黄斌, 丰生杰, 傅程, 张威. 液滴撞击单丝铺展特性的数值研究[J]. 化工学报, 2024, 75(6): 2233-2242. |
[14] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[15] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 285
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||