化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4793-4803.DOI: 10.11949/0438-1157.20240434
郭文显1(), 张燕1,3, 张云1, 邓才智1, 石锦煜1, 陈妹琼2,3(), 张敏3, 程发良3()
收稿日期:
2024-04-22
修回日期:
2024-08-27
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
陈妹琼,程发良
作者简介:
郭文显(1980—),男,硕士,副教授,guowenxian@dgcu.edu.cn
基金资助:
Wenxian GUO1(), Yan ZHANG1,3, Yun ZHANG1, Caizhi DENG1, Jinyu SHI1, Meiqiong CHEN2,3(), Min ZHANG3, Faliang CHENG3()
Received:
2024-04-22
Revised:
2024-08-27
Online:
2024-12-25
Published:
2025-01-03
Contact:
Meiqiong CHEN, Faliang CHENG
摘要:
开发新型、高效、廉价的阳极材料,是解决微生物燃料电池(microbial fuel cells,MFCs)应用瓶颈问题的主要途径之一。使用简单生物质直接炭化法基于甘蔗秸秆制备了先进的生物质碳气凝胶(carbon aerogel,CA),并以此为阳极开发了高性能的MFCs。结果显示,得益于天然有序的三维孔结构保证了有效电活性和微生物可及面积,良好的导电性能和生物相容性,以CA-900℃为阳极的MFCs功率密度是二维相同体积碳纸MFCs的2.58倍。经过进一步的电氧化结合还原过程得到的活化生物质碳气凝胶(activated carbon aerogel, ACA)石墨化程度明显增大,导电率显著增强,分级孔结构得到进一步优化,其比表面积和孔体积分别是活化前的1.8倍和2.35倍。ACA-30min MFC的功率密度和库仑效率分别是活化前的1.11倍和1.33倍。这些结果将促进用于MFCs装置的低成本、高效率的生物质三维碳材料的开发,同时为污水净化、农业资源的循环利用开辟新思路。
中图分类号:
郭文显, 张燕, 张云, 邓才智, 石锦煜, 陈妹琼, 张敏, 程发良. 基于活化生物质碳气凝胶的高性能微生物燃料电池[J]. 化工学报, 2024, 75(12): 4793-4803.
Wenxian GUO, Yan ZHANG, Yun ZHANG, Caizhi DENG, Jinyu SHI, Meiqiong CHEN, Min ZHANG, Faliang CHENG. High-performance microbial fuel cell based on activated biomass carbon aerogel[J]. CIESC Journal, 2024, 75(12): 4793-4803.
图4 碳气凝胶材料活化前后的吸附等温线和孔径分布曲线
Fig.4 N2 adsorption–desorption isotherm curves and pore size distribution of biomass carbon aerogel before and after activation
电极 | Rohm/Ω | Rct/Ω | CPE | Q | ||
---|---|---|---|---|---|---|
Y0/(Ω-1·s n ) | n | Y0/(Ω-1·s n ) | n | |||
CA-900℃ | 5.13 | 2.68 | 0.09 | 0.34 | 0.11 | 0.31 |
ACA-30 min | 7.0 | 0.82 | 0.007 | 0.68 | 0.37 | 0.52 |
表1 由EIS曲线拟合得到的参数
Tabel 1 Equivalent electrical circuit parameters obtained by the EIS studies
电极 | Rohm/Ω | Rct/Ω | CPE | Q | ||
---|---|---|---|---|---|---|
Y0/(Ω-1·s n ) | n | Y0/(Ω-1·s n ) | n | |||
CA-900℃ | 5.13 | 2.68 | 0.09 | 0.34 | 0.11 | 0.31 |
ACA-30 min | 7.0 | 0.82 | 0.007 | 0.68 | 0.37 | 0.52 |
前体 | 处理方式 | MFCs构型 | 基质 | 产电微生物 | 最大功率密度 | 文献 |
---|---|---|---|---|---|---|
竹子 | 炭化 | 双室 | 乙酸盐 | 混合菌 | (1652±18) mW/m2 | [ |
松球 | 炭化 | 双室 | 乙酸盐 | 混合菌 | 10.88 W/m3 | [ |
栗子壳 | 炭化+活化 | 双室 | 乙酸盐 | 混合菌 | 23.6 W/m3 | [ |
木棉纤维 | 炭化 | 单室 | 乙酸盐 | 混合菌 | 27.9 W/m3 | [ |
丝瓜络 | 表面负载墨汁 | 单室 | 乙酸盐 | 混合菌 | 0.82 mW/cm3 | [ |
丝瓜络 | H2O2 处理 | 双室 | 乙酸盐 | 混合菌 | (61.7±0.6) W/m3 | [ |
苍耳子碳 | 炭化活化 | 双室 | 乙酸盐 | 混合菌 | (572.57±24.90) μW/m3 | [ |
松果碳 | 炭化 | 双室 | 乙酸盐 | 混合菌 | 10.88 W/m3 | [ |
葵花壳碳 | 炭化活化 | 双室 | 磷酸盐 | 希瓦氏菌 | 28.00 W/m3 | [ |
甘蔗 | 冷干炭化+活化 | 双室 | 葡萄糖 | 大肠杆菌 | 58.56 W/m3 | 本研究 |
表2 不同生物质碳阳极MFCs的性能对比
Table 2 Performance comparison of MFCs with different biomass carbon anodes
前体 | 处理方式 | MFCs构型 | 基质 | 产电微生物 | 最大功率密度 | 文献 |
---|---|---|---|---|---|---|
竹子 | 炭化 | 双室 | 乙酸盐 | 混合菌 | (1652±18) mW/m2 | [ |
松球 | 炭化 | 双室 | 乙酸盐 | 混合菌 | 10.88 W/m3 | [ |
栗子壳 | 炭化+活化 | 双室 | 乙酸盐 | 混合菌 | 23.6 W/m3 | [ |
木棉纤维 | 炭化 | 单室 | 乙酸盐 | 混合菌 | 27.9 W/m3 | [ |
丝瓜络 | 表面负载墨汁 | 单室 | 乙酸盐 | 混合菌 | 0.82 mW/cm3 | [ |
丝瓜络 | H2O2 处理 | 双室 | 乙酸盐 | 混合菌 | (61.7±0.6) W/m3 | [ |
苍耳子碳 | 炭化活化 | 双室 | 乙酸盐 | 混合菌 | (572.57±24.90) μW/m3 | [ |
松果碳 | 炭化 | 双室 | 乙酸盐 | 混合菌 | 10.88 W/m3 | [ |
葵花壳碳 | 炭化活化 | 双室 | 磷酸盐 | 希瓦氏菌 | 28.00 W/m3 | [ |
甘蔗 | 冷干炭化+活化 | 双室 | 葡萄糖 | 大肠杆菌 | 58.56 W/m3 | 本研究 |
1 | Zhang S, Jiang J, Wang H, et al. A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts[J]. Journal of CO2 Utilization, 2021, 51: 101640. |
2 | Zhao J, Li F, Cao Y, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms[J]. Biotechnology Advances, 2021, 53: 107682. |
3 | Sun M, Zhai L F, Li W W, et al. Harvest and utilization of chemical energy in wastes by microbial fuel cells[J]. Chemical Society Reviews, 2016, 45(10): 2847-2870. |
4 | Li S, Cheng C, Thomas A. Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts[J]. Advanced Materials, 2017, 29(8): 1602547. |
5 | Yang W, Chen S. Biomass-derived carbon for electrode fabrication in microbial fuel cells: a review[J]. Industrial & Engineering Chemistry Research, 2020, 59(14): 6391-6404. |
6 | Zhou M, Chi M, Luo J, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4427-4435. |
7 | Wang Y, He C, Li W, et al. High power generation in mixed-culture microbial fuel cells with corncob-derived three-dimensional N-doped bioanodes and the impact of N dopant states[J]. Chemical Engineering Journal, 2020, 399: 125848. |
8 | Vempaty A, Kumar A, Pandit S, et al. Evaluation of the Datura peels derived biochar-based anode for enhancing power output in microbial fuel cell application[J]. Biocatalysis and Agricultural Biotechnology, 2023, 47: 102560. |
9 | Zhang Y, Wang F, Zhu H, et al. Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors[J]. Applied Surface Science, 2017, 426: 99-106. |
10 | Kobina Sam D, Kobina Sam E, Lv X. Application of biomass-derived nitrogen-doped carbon aerogels in electrocatalysis and supercapacitors[J]. ChemElectroChem, 2020, 7(18): 3695-3712. |
11 | Chen Y, Zhang L, Yang Y, et al. Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications[J]. Advanced Materials, 2021, 33(11): 2005569. |
12 | 陈媛, 韩雁明, 范东斌, 等. 生物质纤维素基碳气凝胶材料研究进展[J]. 林业科学, 2019, 55(10): 88-98. |
Chen Y, Han Y M, Fan D B, et al. Carbon aerogel based on biomass cellulose[J]. Scientia Silvae Sinicae, 2019, 55(10): 88-98. | |
13 | Hao P, Zhao Z, Tian J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6(20): 12120-12129. |
14 | Chen Y, Fan D, Lyu S, et al. Elasticity-enhanced and aligned structure nanocellulose foam-like aerogel assembled with cooperation of chemical art and gradient freezing[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1381-1388. |
15 | Chen Y, Yang S, Fan D, et al. Dual-enhanced hydrophobic and mechanical properties of long-range 3D anisotropic binary-composite nanocellulose foams via bidirectional gradient freezing[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12878-12886. |
16 | Li Y Q, Samad Y A, Polychronopoulou K, et al. Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1492-1497. |
17 | Li Y Q, Samad Y A, Polychronopoulou K, et al. Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and EMI shielding properties[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1419-1427. |
18 | Guo W, Chen M, Liu X, et al. Mo2C/reduced graphene oxide composites with enhanced electrocatalytic activity and biocompatibility for microbial fuel cells[J]. Chemistry - A European Journal, 2021, 27(13): 4291-4296. |
19 | Li X, Hu M H, Zeng L Z, et al. Co-modified MoO2 nanoparticles highly dispersed on N-doped carbon nanorods as anode electrocatalyst of microbial fuel cells[J]. Biosensors and Bioelectronics, 2019, 145: 111727. |
20 | Xiao K, Ding L X, Chen H B, et al. Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(2): 372-378. |
21 | Chen M Q, Guo W X, Zhang Y, et al. Activated nitrogen-doped ordered porous carbon as advanced anode for high-performance microbial fuel cells[J]. Electrochimica Acta, 2021, 391: 138920. |
22 | 魏同业. 生物质基多孔碳材料的制备与应用[D]. 湘潭: 湘潭大学, 2016. |
Wei T Y. Preparation and application of biomass-based porous carbon materials[D]. Xiangtan: Xiangtan University, 2016. | |
23 | Deeke A, Sleutels T H J A, Ter Heijne A, et al. Influence of the thickness of the capacitive layer on the performance of bioanodes in microbial fuel cells[J]. Journal of Power Sources, 2013, 243: 611-616. |
24 | Chen W W, Liu Z L, Hou J X, et al. Enhancing performance of microbial fuel cells by using novel double-layer-capacitor-materials modified anodes[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1816-1823. |
25 | Wu J X, Liu R J, Dong P F, et al. Enhanced electricity generation and storage by nitrogen-doped hierarchically porous carbon modification of the capacitive bioanode in microbial fuel cells[J]. Science of the Total Environment, 2023, 858: 159688. |
26 | Wang R W, Liu D, Yan M, et al. Three-dimensional high performance free-standing anode by one-step carbonization of pinecone in microbial fuel cells[J]. Bioresource Technology, 2019, 292: 121956. |
27 | Zhang J, Li J, Ye D D, et al. Tubular bamboo charcoal for anode in microbial fuel cells[J]. Journal of Power Sources, 2014, 272: 277-282. |
28 | Chen Q, Pu W H, Hou H J, et al. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells[J]. Bioresource Technology, 2018, 249: 567-573. |
29 | Zhu H L, Wang H M, Li Y Y, et al. Lightweight, conductive hollow fibers from nature as sustainable electrode materials for microbial energy harvesting[J]. Nano Energy, 2014, 10: 268-276. |
30 | Zhou L H, Sun L H, Fu P, et al. Carbon nanoparticles of Chinese ink-wrapped natural loofah sponge: a low-cost three-dimensional electrode for high-performance microbial energy harvesting[J]. Journal of Materials Chemistry A, 2017, 5(28): 14741-14747. |
31 | Yang C C, Chen M J, Qian Y J, et al. Packed anode derived from cocklebur fruit for improving long-term performance of microbial fuel cells[J]. Science China Materials, 2019, 62(5): 645-652. |
32 | Wang H Y, Wang G M, Ling Y C, et al. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode[J]. Nanoscale, 2013, 5(21): 10283-10290. |
33 | Harnisch F, Schröder U. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems[J]. Chemical Society Reviews, 2010, 39(11): 4433-4448. |
[1] | 赵博超, 聂一凡, 王雪婷, 田向勤, 田祎, 潘涔轩. 不同制液工艺对锰矿锰浸出回收及钙镁铁迁移影响[J]. 化工学报, 2024, 75(S1): 292-299. |
[2] | 吴德威, 汪郑鹏, 周玥, 李晓宁, 陈招, 李卓, 刘成伟, 李学刚, 肖文德. 固定床法制备锂离子电池硅碳负极材料及其储锂性能研究[J]. 化工学报, 2024, 75(S1): 300-308. |
[3] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[4] | 彭丹, 卢俊杰, 倪文静, 杨媛, 汪靖伦. 高电压钴酸锂电池电解液研究进展[J]. 化工学报, 2024, 75(9): 3028-3040. |
[5] | 张佳颖, 王聪, 王雅君. CNT-Co/Bi2O3催化剂光催化协同过硫酸盐活化高效降解四环素[J]. 化工学报, 2024, 75(9): 3163-3175. |
[6] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
[7] | 王舒英, 左涛, 石志伟, 范小明, 张卫新. 阳离子交换树脂基介孔石墨化碳合成与储钠性能[J]. 化工学报, 2024, 75(9): 3338-3347. |
[8] | 朱楼, 宋杨凡, 王猛, 施睿鹏, 厉彦民, 陈鸿伟, 刘卓, 魏翔. 中心脉冲气-液-固循环流化床微生物燃料电池产电特性[J]. 化工学报, 2024, 75(8): 2991-3001. |
[9] | 张香港, 常玉龙, 汪华林, 江霞. 废弃秸秆等生物质低能耗非相变秒级干燥[J]. 化工学报, 2024, 75(7): 2433-2445. |
[10] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[11] | 张祎琪, 谭雪松, 李吾环, 张权, 苗长林, 庄新姝. 温和条件下乙二醇苯醚高效分离回收甘蔗渣组分[J]. 化工学报, 2024, 75(6): 2274-2282. |
[12] | 江洋, 彭长宏, 陈伟, 周豪, 马忠彬, 李洪博, 邱在容, 张国鹏, 周康根. 废旧磷酸铁锂粉料综合回收中试研究[J]. 化工学报, 2024, 75(6): 2353-2361. |
[13] | 裴欣哲, 孙朱行, 林钰翔, 张朝阳, 钱勇, 吕兴才. 电催化分解液氨阳极材料的研究[J]. 化工学报, 2024, 75(5): 1843-1854. |
[14] | 张林, 张子怡, 李勇, 童少平. Fe-MOF-74前体制备铁-碳/氮复合材料及其活化过硫酸盐性能[J]. 化工学报, 2024, 75(5): 1882-1889. |
[15] | 李云璇, 刘新悦, 陈熙, 刘文, 周明月, 蓝兴英. 基于固液氧化还原靶向反应的能量存储技术:材料、器件及动力学[J]. 化工学报, 2024, 75(4): 1222-1240. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||