化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4793-4803.DOI: 10.11949/0438-1157.20240434

• 能源和环境工程 • 上一篇    下一篇

基于活化生物质碳气凝胶的高性能微生物燃料电池

郭文显1(), 张燕1,3, 张云1, 邓才智1, 石锦煜1, 陈妹琼2,3(), 张敏3, 程发良3()   

  1. 1.东莞城市学院城建与智造学院,广东 东莞 523419
    2.东莞职业技术学院,广东 东莞 523808
    3.东莞理工学院 广东省新型纳米材料工程技术研究中心,广东 东莞 523808
  • 收稿日期:2024-04-22 修回日期:2024-08-27 出版日期:2024-12-25 发布日期:2025-01-03
  • 通讯作者: 陈妹琼,程发良
  • 作者简介:郭文显(1980—),男,硕士,副教授,guowenxian@dgcu.edu.cn
  • 基金资助:
    广东省普通高校特色创新类项目(2021KTSCX191);广东省教育厅2024年度(特色创新)项目(2024KTSCX410);2024年广东省教育科学规划课题(2024GXJK680);东莞市社会发展科技项目(重点项目)(20211800904572);广东省科技创新战略专项资金(大学生科技创新培育项目)(pdjh2022b0742)

High-performance microbial fuel cell based on activated biomass carbon aerogel

Wenxian GUO1(), Yan ZHANG1,3, Yun ZHANG1, Caizhi DENG1, Jinyu SHI1, Meiqiong CHEN2,3(), Min ZHANG3, Faliang CHENG3()   

  1. 1.School of Urban Construction and Intelligent Manufacturing, Dongguan City University, Dongguan 523419, Guangdong, China
    2.Dongguan Polytechnic, Dongguan 523808, Guangdong, China
    3.Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, Guangdong, China
  • Received:2024-04-22 Revised:2024-08-27 Online:2024-12-25 Published:2025-01-03
  • Contact: Meiqiong CHEN, Faliang CHENG

摘要:

开发新型、高效、廉价的阳极材料,是解决微生物燃料电池(microbial fuel cells,MFCs)应用瓶颈问题的主要途径之一。使用简单生物质直接炭化法基于甘蔗秸秆制备了先进的生物质碳气凝胶(carbon aerogel,CA),并以此为阳极开发了高性能的MFCs。结果显示,得益于天然有序的三维孔结构保证了有效电活性和微生物可及面积,良好的导电性能和生物相容性,以CA-900℃为阳极的MFCs功率密度是二维相同体积碳纸MFCs的2.58倍。经过进一步的电氧化结合还原过程得到的活化生物质碳气凝胶(activated carbon aerogel, ACA)石墨化程度明显增大,导电率显著增强,分级孔结构得到进一步优化,其比表面积和孔体积分别是活化前的1.8倍和2.35倍。ACA-30min MFC的功率密度和库仑效率分别是活化前的1.11倍和1.33倍。这些结果将促进用于MFCs装置的低成本、高效率的生物质三维碳材料的开发,同时为污水净化、农业资源的循环利用开辟新思路。

关键词: 微生物燃料电池, 阳极, 生物质, 碳气凝胶, 电化学, 活化

Abstract:

The development of new, high -efficiency, and cheap anode materials is one of the main ways to solve the bottleneck problem of microbial fuel cells (MFCs) applications. The biomass-based carbon aerogel (CA) was prepared based on sugarcane using a simple direct carbonization method and used as an advanced anode in high-performance MFCs. The results showed that benefiting from the naturally ordered pore three-dimensional structure that ensured effective electroactivity and microbial accessible area, as well as good electrical conductivity and biocompatibility, the maximum power density of MFCs with CA-900℃ as the anode was 2.58 times of the MFCs higher than that of MFCs with two-dimensional carbon paper with the same volume. Furthermore, the activated biomass carbon aerogel (ACA) was obtained with the electrooxidation and reduction processes. The ACA-30min exhibited a higher degree of graphitization, significantly enhanced electrical conductivity, and a more optimized hierarchical pore structure. The specific surface area and pore volume of ACA-30min are 1.8 times and 2.35 times of the CA-900℃, respectively. The maximum power density and Coulombic efficiency of the ACA-30min MFCs were 1.11 times and 1.33 times of the CA-900℃ MFCs, respectively. These results will facilitate the development of green, efficient, and cost-effective three-dimensional carbon materials for MFCs. It also opens up new avenues for sewage treatment and recycling of agricultural resources.

Key words: microbial fuel cells, anode, biomass, carbon aerogel, electrochemical, activation

中图分类号: