化工学报 ›› 2025, Vol. 76 ›› Issue (2): 744-754.DOI: 10.11949/0438-1157.20240608
• 分离工程 • 上一篇
收稿日期:
2024-06-03
修回日期:
2024-07-11
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
张东辉
作者简介:
姚佳逸(1999—),女,硕士研究生,jiayi_yao@tju.edu.cn
Jiayi YAO(), Donghui ZHANG(
), Zhongli TANG, Wenbin LI
Received:
2024-06-03
Revised:
2024-07-11
Online:
2025-03-25
Published:
2025-03-10
Contact:
Donghui ZHANG
摘要:
碳捕获、利用与封存是应对全球气候变化的关键技术,而火电厂烟气是工业碳排放主要来源之一。变压吸附是常用的烟气捕碳工艺之一,已有的研究表明常规真空变压吸附难以获得满足指标的二氧化碳产品,双回流变压吸附可获得两种高纯度和回收率的产品,但生产能力较低。对此,基于文献数据对组成为N2/CO2=85%/15%的烟气进行了二级耦合工艺的模拟,探究了进料位置,吸附时长,空塔气速和轻、重回流量对工艺的影响。结果表明,吸附压力为一级200 kPa,二级105 kPa,解吸压力为一级30 kPa,二级2 kPa,进料位置距塔底与塔高比0.4,吸附时长90 s,空塔气速0.07 m/s,轻回流量5.5×10-3 mol/s,重回流量1.1×10-2 mol/s时,能得到96.42%的CO2和99.93%的N2,回收率96.22%和99.47%。此外,与文献对比,提出的二级工艺具有高生产能力和较低能耗。
中图分类号:
姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754.
Jiayi YAO, Donghui ZHANG, Zhongli TANG, Wenbin LI. Research on carbon capture by pressure swing adsorption based on two-stage dual reflux[J]. CIESC Journal, 2025, 76(2): 744-754.
工艺 | 时间/s | ||||||
---|---|---|---|---|---|---|---|
90 | 10 | 45 | 90 | 10 | 45 | ||
一级 | bed 1 | AD | ED | VU | PU | ER | PR |
bed 2 | PU | ER | PR | AD | ED | VU | |
二级 | bed 3 | AD | ED | VU | VU | ER | PR |
bed 4 | VU | ER | PR | AD | ED | VU |
表1 二级双回流变压吸附时序
Table 1 The schedule of the two-stage dual-reflux PSA process
工艺 | 时间/s | ||||||
---|---|---|---|---|---|---|---|
90 | 10 | 45 | 90 | 10 | 45 | ||
一级 | bed 1 | AD | ED | VU | PU | ER | PR |
bed 2 | PU | ER | PR | AD | ED | VU | |
二级 | bed 3 | AD | ED | VU | VU | ER | PR |
bed 4 | VU | ER | PR | AD | ED | VU |
参数 | N2 | CO2 |
---|---|---|
IP1/(kmol/(kg·kPa)) | 6.77×10-10 | 6.07×10-9 |
IP2/K | 2034.0 | 2435.0 |
IP3/kPa-1 | 2.01×10-7 | 1.32×10-6 |
IP4/K | 2034.0 | 2034.0 |
ΔH/(kJ/mol) | -17.08 | -23.14 |
表2 CO2、N2在硅胶上的扩展型Langmuir 2拟合参数[25]
Table 2 Fitting parameters of extended Langmuir 2 model for CO2/N2 adsorption on silica gel[25]
参数 | N2 | CO2 |
---|---|---|
IP1/(kmol/(kg·kPa)) | 6.77×10-10 | 6.07×10-9 |
IP2/K | 2034.0 | 2435.0 |
IP3/kPa-1 | 2.01×10-7 | 1.32×10-6 |
IP4/K | 2034.0 | 2034.0 |
ΔH/(kJ/mol) | -17.08 | -23.14 |
参数 | 数值 |
---|---|
Hb1/m | 1.00 |
Hb2/m | 0.52 |
Db1/m | 0.060 |
Db2/m | 0.025 |
Wt/m | 0.002 |
rp/m | 0.002 |
ρb/(kg/m3) | 785 |
kw/(W/(m·K)) | 17 |
ks/(W/(m·K)) | 0.3 |
kg/(W/(m·K)) | 0.242 |
cpw/(kJ/(kg·K)) | 0.502 |
cps/(kJ/(kg·K)) | 0.902 |
hamb/(W/(m2·K)) | 60 |
εb | 0.3125 |
εp | 0.1429 |
ρw/(kg/m3) | 7800 |
Tamb/K | 298.15 |
表3 吸附塔及吸附剂相关参数
Table 3 Parameters for column and adsorbent
参数 | 数值 |
---|---|
Hb1/m | 1.00 |
Hb2/m | 0.52 |
Db1/m | 0.060 |
Db2/m | 0.025 |
Wt/m | 0.002 |
rp/m | 0.002 |
ρb/(kg/m3) | 785 |
kw/(W/(m·K)) | 17 |
ks/(W/(m·K)) | 0.3 |
kg/(W/(m·K)) | 0.242 |
cpw/(kJ/(kg·K)) | 0.502 |
cps/(kJ/(kg·K)) | 0.902 |
hamb/(W/(m2·K)) | 60 |
εb | 0.3125 |
εp | 0.1429 |
ρw/(kg/m3) | 7800 |
Tamb/K | 298.15 |
模型方程 | 数学表达 | ||
---|---|---|---|
质量平衡 | (1) (2) | ||
能量平衡 | 气相 | (3) | |
固相 | (4) | ||
塔壁 | (5) | ||
动量平衡 | (6) | ||
吸附平衡 | (7) | ||
吸附速率 | (8) | ||
纯度 | (9) | ||
回收率 | (10) | ||
生产能力 | (11) | ||
电耗 | (12) | ||
阀门 | (13) |
表4 二级双回流变压吸附数学模型
Table 4 Mathematical models of the two-stage dual-reflux PSA process
模型方程 | 数学表达 | ||
---|---|---|---|
质量平衡 | (1) (2) | ||
能量平衡 | 气相 | (3) | |
固相 | (4) | ||
塔壁 | (5) | ||
动量平衡 | (6) | ||
吸附平衡 | (7) | ||
吸附速率 | (8) | ||
纯度 | (9) | ||
回收率 | (10) | ||
生产能力 | (11) | ||
电耗 | (12) | ||
阀门 | (13) |
工艺 | CO2纯度/% | CO2回收率/% | N2纯度/% | N2回收率/% | 生产能力/( | 能耗/( |
---|---|---|---|---|---|---|
二级DR-PSA | 96.42 | 96.22 | 99.93 | 99.47 | 1.05 | 1.69 |
二床六步DR-PSA[ | 95.6 | 96.8 | >98 | >98 | 0.32 | 2.5 |
二床六步DR-PSA[ | 95.55 | 96.81 | — | — | 0.89 | 2.5 |
三床七步VPSA[ | 80.94 | 90.61 | — | — | 0.52 | 1.0 |
表5 不同PSA捕碳工艺对比
Table 5 Comparison of different PSA processes for carbon capture
工艺 | CO2纯度/% | CO2回收率/% | N2纯度/% | N2回收率/% | 生产能力/( | 能耗/( |
---|---|---|---|---|---|---|
二级DR-PSA | 96.42 | 96.22 | 99.93 | 99.47 | 1.05 | 1.69 |
二床六步DR-PSA[ | 95.6 | 96.8 | >98 | >98 | 0.32 | 2.5 |
二床六步DR-PSA[ | 95.55 | 96.81 | — | — | 0.89 | 2.5 |
三床七步VPSA[ | 80.94 | 90.61 | — | — | 0.52 | 1.0 |
1 | Liu X L, He Y X. Notice of retraction: a decomposition analysis on influencing factors of energy-related CO2 emissions in China[C]//2010 IEEE International Conference on Advanced Management Science(ICAMS 2010). IEEE, 2010: 354-359. |
2 | 刘冰, 孙伟娜, 安亚雄, 等. 带循环的二阶变压吸附碳捕集工艺模拟、实验及分析[J]. 化工学报, 2018, 69(11): 4788-4797. |
Liu B, Sun W N, An Y X, et al. Simulation, experimentation and analyzation of two stage pressure swing adsorption process for CO2 capture[J]. CIESC Journal, 2018, 69(11): 4788-4797. | |
3 | 杨R T.吸附法气体分离[M]. 王树森, 译. 北京: 化学工业出版社, 1991: 244. |
Yang R T. Gas Separation by Adsorption Processes[M]. Wang S S, trans. Beijing: Chemical Industry Press, 1991: 244. | |
4 | 汪亚燕, 田彩霞, 丁兆阳, 等. 基于双回流变压吸附工艺的空气分离模拟及分析[J]. 化工学报, 2019, 70(10): 4002-4011. |
Wang Y Y, Tian C X, Ding Z Y, et al. Simulation and analysis of dual-reflux pressure swing adsorption for air separation[J]. CIESC Journal, 2019, 70(10): 4002-4011. | |
5 | 沈圆辉. 真空变压吸附沼气升级及二氧化碳捕集过程研究[D]. 天津: 天津大学, 2020. |
Shen Y H. Study on upgrading of biogas and carbon dioxide capture process by vacuum pressure swing adsorption[D]. Tianjin: Tianjin University, 2020. | |
6 | 孔德齐, 张莹莹, 武文玲, 等. 六塔变压吸附制氧工艺的模拟与分析[J]. 化工学报, 2023, 74(12): 4934-4944. |
Kong D Q, Zhang Y Y, Wu W L, et al. Simulation and analysis of oxygen production process by six-bed pressure swing adsorption process[J]. CIESC Journal, 2023, 74(12): 4934-4944. | |
7 | Gutierrez-Ortega A, Melis A, Nomen R, et al. Parameter screening of a VPSA cycle with automated breakthrough control for carbon capture[J]. Fuel, 2023, 339: 127298. |
8 | Chen X, Wang J, Ren T S, et al. Novel exchanger type vacuum temperature swing adsorption for post-combustion CO2 capture: process design and plant demonstration[J]. Separation and Purification Technology, 2023, 308: 122837. |
9 | Yu X X, Liu B, Shen Y H, et al. Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas[J]. Chinese Journal of Chemical Engineering, 2022, 43: 378-391. |
10 | Wilkes M D, Brown S. Flexible CO2 capture for open-cycle gas turbines via vacuum-pressure swing adsorption: a model-based assessment[J]. Energy, 2022, 250: 123805. |
11 | Cheng C Y, Kuo C C, Yang M W, et al. CO2 capture from flue gas of a coal-fired power plant using three-bed PSA process[J]. Energies, 2021, 14(12): 3582. |
12 | Jaschik M, Tanczyk M, Jaschik J, et al. The performance of a hybrid VSA-membrane process for the capture of CO2 from flue gas[J]. International Journal of Greenhouse Gas Control, 2020, 97: 103037. |
13 | Alibolandi M, Sadrameli S M, Rezaee F, et al. Separation of CO2/N2 mixture by vacuum pressure swing adsorption (VPSA) using zeolite 13X type and carbon molecular sieve adsorbents[J]. Heat and Mass Transfer, 2020, 56(6): 1985-1994. |
14 | Cui Y K, Xing Y, Tian J L, et al. Insights into the adsorption performance and separation mechanisms for CO2 and CO on NaX and CaA zeolites by experiments and simulation[J]. Fuel, 2023, 337: 127179. |
15 | Kakiuchi T, Yajima T, Shigaki N, et al. Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas[J]. Adsorption, 2023, 29(1): 9-27. |
16 | 汪亚燕. 双回流变压吸附空气分离工艺的设计模拟[D]. 天津: 天津大学, 2020. |
Wang Y Y. Design and simulation of double reflux pressure swing adsorption air separation process[D]. Tianjin: Tianjin University, 2020. | |
17 | 田彩霞. 制氧吸附剂的合成与双回流变压吸附空气分离模拟实验研究[D]. 天津: 天津大学, 2018. |
Tian C X. Study on synthesis of oxygen-making adsorbent and simulation experiment of air separation by double reflux pressure swing adsorption[D]. Tianjin: Tianjin University, 2018. | |
18 | 鲁东东. 制氧吸附剂的合成与双回流真空变压吸附空分模拟[D]. 天津: 天津大学, 2014. |
Lu D D. Synthesis of oxygen-making adsorbent and air separation simulation of double reflux vacuum pressure swing adsorption[D]. Tianjin: Tianjin University, 2014. | |
19 | May E F, Zhang Y, Saleman T L H, et al. Demonstration and optimisation of the four dual-reflux pressure swing adsorption configurations[J]. Separation and Purification Technology, 2017, 177: 161-175. |
20 | Tian C X, Fu Q, Ding Z Y, et al. Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2 [J]. Separation and Purification Technology, 2017, 189: 54-65. |
21 | Weh R, Xiao G K, Sadeghi Pouya E, et al. Helium recovery and purification by dual reflux pressure swing adsorption[J]. Separation and Purification Technology, 2022, 288: 120603. |
22 | Guo Y L, Gu X W, Hu G P, et al. Enrichment of low-grade methane by dual reflux vacuum swing adsorption[J]. Separation and Purification Technology, 2022, 301: 121907. |
23 | Lei Q H, Tang T, Xiong Y F, et al. Experimental verification of hydrogen isotope enrichment process by dual-column pressure swing and temperature swing adsorption[J]. Fusion Engineering and Design, 2021, 172: 112726. |
24 | Wakasugi R, Kodama A, Goto M, et al. Dual reflux PSA process applied to VOC recovery as liquid condensate[J]. Adsorption, 2005, 11(1): 561-566. |
25 | 李冬冬. 双回流真空变压吸附分离CO2/N2实验和模拟研究[D]. 天津: 天津大学, 2017. |
Li D D. Experimental and simulation study on separation of CO2/N2 by double reflux vacuum pressure swing adsorption[D]. Tianjin: Tianjin University, 2017. | |
26 | Khurana M, Farooq S. Simulation and optimization of a 6-step dual-reflux VSA cycle for post-combustion CO2 capture[J]. Chemical Engineering Science, 2016, 152: 507-515. |
27 | Wawrzyńczak D, Majchrzak-Kucęba I, Srokosz K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas[J]. Separation and Purification Technology, 2019, 209: 560-570. |
28 | Reynolds S P, Mehrotra A, Ebner A D, et al. Heavy reflux PSA cycles for CO2 recovery from flue gas(partⅠ): Performance evaluation[J]. Adsorption, 2008, 14(2): 399-413. |
29 | Shen Y H, Zhou Y, Li D D, et al. Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas[J]. International Journal of Greenhouse Gas Control, 2017, 65: 55-64. |
30 | Wang Z G, Shen Y H, Zhang D H, et al. A comparative study of multi-objective optimization with ANN-based VPSA model for CO2 capture from dry flue gas[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108031. |
[1] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
[2] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
[3] | 杨晋宁, 王卫凡, 徐冬, 刘毅, 翁小涵, 原野, 王志. 工业烟道气碳捕集膜技术放大研究进展[J]. 化工学报, 2025, 76(2): 504-518. |
[4] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 重质颗粒流态化研究现状与展望[J]. 化工学报, 2025, 76(2): 466-483. |
[5] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
[6] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
[7] | 邓志诚, 杨欢, 王斯民, 王家瑞. 微混燃烧器中微管结构对氢燃料掺混效果与燃烧性能影响[J]. 化工学报, 2025, 76(1): 335-347. |
[8] | 王瀚彬, 胡帅, 毕丰雷, 李隽森, 贺来宾. 新型波纹翅片金属氢化物反应器的放氢性能有限元分析[J]. 化工学报, 2025, 76(1): 221-230. |
[9] | 高羡明, 杨汶轩, 卢少辉, 任晓松, 卢方财. 双槽道结构对超疏水表面液滴合并弹跳的影响[J]. 化工学报, 2025, 76(1): 208-220. |
[10] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[11] | 韩志敏, 周相宇, 张宏宇, 徐志明. 不同粗糙元结构下CaCO3污垢局部沉积特性[J]. 化工学报, 2025, 76(1): 151-160. |
[12] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[13] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[14] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[15] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 41
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||