• •
向昕辰1(), 鲁丹1,2, 赵影1, 姚之侃1,2, 寇瑞强3, 郑丹军1, 周志军1,4, 张林1,2(
)
收稿日期:
2024-10-23
修回日期:
2024-12-20
出版日期:
2025-01-02
通讯作者:
张林
作者简介:
向昕辰(2000—),男,硕士研究生,willshake@zju.edu.cn
基金资助:
Xinchen XIANG1(), Dan LU1,2, Ying ZHAO1, Zhikan YAO1,2, Ruiqiang KOU3, Danjun ZHENG1, Zhijun ZHOU1,4, Lin ZHANG1,2(
)
Received:
2024-10-23
Revised:
2024-12-20
Online:
2025-01-02
Contact:
Lin ZHANG
摘要:
纳滤膜表面荷正电改性有望提高锂镁分离选择性,但常规表面荷正电改性方法效率不高,膜表面荷正电密度低,静电屏蔽作用难消除,锂镁选择性提升有限。利用氮烷基化对表面接枝聚乙烯亚胺的纳滤膜(PEI/PA膜)表面胺基进行原位季铵化改性,制得荷正电性强化的纳滤膜(N-alkyl@PEI/PA膜)。改性后膜表面等电点从4.4提升至7.9,膜表面荷正电强度得到显著提高。结果表明,表面改性过程对膜通量影响较小。表面季铵化改性膜在不同pH条件下的锂镁混合溶液分离中,展示出稳定的锂镁分离性能。在pH=6.8时,其锂镁分离因子达35.7;在pH=9.7时,PEI/PA膜由于表面质子化程度降低,荷正电性减弱,其锂镁选择性降至10.1,降幅达75%,而N-alkyl@PEI/PA膜得益于膜表面季铵基团的高电离程度及荷正电强度,其锂镁选择性仍维持在21.9。本研究为提高纳滤膜在宽pH范围内锂镁分离性能的稳定性提供了参考。
中图分类号:
向昕辰, 鲁丹, 赵影, 姚之侃, 寇瑞强, 郑丹军, 周志军, 张林. 聚酰胺纳滤膜表面季铵化提高荷正电性及其锂镁分离性能[J]. 化工学报, DOI: 10.11949/0438-1157.20241174.
Xinchen XIANG, Dan LU, Ying ZHAO, Zhikan YAO, Ruiqiang KOU, Danjun ZHENG, Zhijun ZHOU, Lin ZHANG. Preparation of highly positively charged NF membranes with surface quaternization modification and Li+/Mg2+ separation performance[J]. CIESC Journal, DOI: 10.11949/0438-1157.20241174.
图3 PEI接枝浓度优化:(a) PEI浓度对膜表面胺基密度影响;(b) pH = 6.8下不同PEI浓度改性膜对MgCl2的截留性能
Fig.3 PEI grafting concentration optimization: (a) The effect of PEI concentration on the content of surface amine groups (b) Rejection performance of modified membranes with different PEI concentrations for MgCl2 solution at pH 6.8
图4 氮烷基化条件优化:(a) 氢氧化钠浓度优化;(b) 碘甲烷浓度优化
Fig.4 Optimization of N-alkylation reaction conditions: (a) Optimization of sodium hydroxide concentration (b) Optimization of iodomethane concentration
图5 纳滤膜表面及断面SEM形貌图:(a)(d) PA膜;(b)(e) PEI/PA膜;(c)(f) N-alkyl@PEI/PA膜;放大倍数:80000×
Fig.5 The surface and cross-section SEM of NF membranes: (a) (d) PA membrane (b) (e) PEI/PA membrane (c) (f) N-alkyl@PEI/PA membrane
图8 改性前后膜锂镁单盐分离性能:(a) 膜对pH=6.8的MgCl2溶液的分离性能;(b) 膜对pH=9.7的MgCl2溶液的分离性能;(c) 膜对pH=6.8的LiCl溶液的分离性能;(d) 膜对pH=9.7的LiCl溶液的分离性能
Fig.8 Single salt separation performance of membranes: (a) MgCl2 solution at pH 6.8 (b) MgCl2 solution at pH 9.7 (c) LiCl solution at pH 6.8 (d) LiCl solution at pH 9.7
图9 改性前后膜锂镁混盐分离性能:(a) 不同pH下膜对混盐溶液(Li+:Mg2+ = 1:10)中Mg2+的截留性能;(b) 不同pH下膜对混盐溶液(Li+:Mg2+ = 1:10)中Li+的截留性能;(d) 不同pH下膜对混盐溶液(Li+:Mg2+ = 1:10)的锂镁分离因子
Fig.9 Mixed salt (Li+:Mg2+ = 1:10) separation performance of membrane: (a) Mg2+ rejection at different pH (b) Li+ rejection at different pH (c) Separation factor at different pH
膜类型 | 压力/bar | 混盐浓度/mg·L-1 | 镁锂比 | pH条件 | 分离因子 | 参考文献 |
---|---|---|---|---|---|---|
N-alkyl@PEI/PA | 6 | 10 | 1000 | 6.8 | 35.7 | 本文 |
NF90 | 16 | 20 | 2000 | 6.0 | 2.1 | [ |
DK | 16 | 24 | 4940 | 7.0 | 3.2 | [ |
TFC-MeOH | 6 | 24 | 1000 | 7.6 | 5.77 | [ |
TFC-1 | 6 | 24 | 1000 | 7.6 | 9.36 | [ |
TFC-2 | 6 | 24 | 1000 | 7.6 | 9.8 | [ |
TFC-3 | 6 | 24 | 1000 | 7.6 | 11.38 | [ |
TFC-4 | 6 | 24 | 1000 | 7.6 | 11.15 | [ |
PEI-g-PA | 4 | 73 | 2000 | 7.0 | 23.9 | [ |
PES/(CNC-COOH)/PEI/TMC | 4 | 20 | 2000 | 7.0 | 12.2 | [ |
MCPM-2.0 | 2 | 1.54 | 1000 | 7.0 | 18 | [ |
PEI/TMC-PDA-gC3N4 (M4) | 4 | 20 | 2000 | 7.3 | 13.39 | [ |
PEI/TMC-PDA-gC3N4 (M5) | 4 | 48 | 2000 | 7.3 | 10.77 | [ |
NF-IL-2 | 6 | 20 | 2000 | 7.9 | 8.12 | [ |
PBI_12-25K | 6 | 10 | 2000 | 7.9 | 15.15 | [ |
表1 实验锂镁分离因子与文献数据对比
Table 1 Comparison of experimental Li+/Mg2+ separation factors with data in literature
膜类型 | 压力/bar | 混盐浓度/mg·L-1 | 镁锂比 | pH条件 | 分离因子 | 参考文献 |
---|---|---|---|---|---|---|
N-alkyl@PEI/PA | 6 | 10 | 1000 | 6.8 | 35.7 | 本文 |
NF90 | 16 | 20 | 2000 | 6.0 | 2.1 | [ |
DK | 16 | 24 | 4940 | 7.0 | 3.2 | [ |
TFC-MeOH | 6 | 24 | 1000 | 7.6 | 5.77 | [ |
TFC-1 | 6 | 24 | 1000 | 7.6 | 9.36 | [ |
TFC-2 | 6 | 24 | 1000 | 7.6 | 9.8 | [ |
TFC-3 | 6 | 24 | 1000 | 7.6 | 11.38 | [ |
TFC-4 | 6 | 24 | 1000 | 7.6 | 11.15 | [ |
PEI-g-PA | 4 | 73 | 2000 | 7.0 | 23.9 | [ |
PES/(CNC-COOH)/PEI/TMC | 4 | 20 | 2000 | 7.0 | 12.2 | [ |
MCPM-2.0 | 2 | 1.54 | 1000 | 7.0 | 18 | [ |
PEI/TMC-PDA-gC3N4 (M4) | 4 | 20 | 2000 | 7.3 | 13.39 | [ |
PEI/TMC-PDA-gC3N4 (M5) | 4 | 48 | 2000 | 7.3 | 10.77 | [ |
NF-IL-2 | 6 | 20 | 2000 | 7.9 | 8.12 | [ |
PBI_12-25K | 6 | 10 | 2000 | 7.9 | 15.15 | [ |
1 | 赵显赫, 耿光超, 龚裕仲, 等. 基于深度学习的储能锂离子电池健康状态估计[J]. 能源工程, 2022, 42(4): 28-35. |
Zhao X H, Geng G C, Gong Y Z, et al. Real-time state of health estimation of lithium ion battery in energy storage power station based on deep learning[J]. Energy Engineering, 2022, 42(4): 28-35. | |
2 | Zhang Y, Wang L, Sun W, et al. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 7-23. |
3 | Nagata M, Saraswat A, Nakahara H, et al. Miniature pin-type lithium batteries for medical applications[J]. Journal of Power Sources, 2005, 146(2): 762-765. |
4 | 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J]. 化工学报, 2022, 73(2): 481-503. |
Jiang C X, Chen B L, Zhang D Y, et al. Progress in isolating lithium resources from China salt lake brine[J]. CIESC Journal, 2022, 73(2): 481-503. | |
5 | Zhang N, Yu H C, Zhang J D, et al. Pressure-driven Li+/Mg2+ selective permeation through size-sieving nanochannels: the role of the second hydration shell[J]. Separation and Purification Technology, 2023, 327: 124818. |
6 | 吴雨茜,唐元晖,郭强,等. 纳滤膜对硫酸型解吸液锂镁分离的实验研究与模拟 [J]. 化工学报. |
Wu Y X, Tang Y H, Guo Q, et al. Experimental study and simulation on nanofiltration separation of lithium and magnesium from sulfate desorption solution[J]. CIESC Journal. | |
7 | Bai R B, Wang J F, Wang D G, et al. Selective separation of lithium from the high magnesium brine by the extraction system containing phosphate-based ionic liquids[J]. Separation and Purification Technology, 2021, 274: 119051. |
8 | Ying J D, Luo M J, Jin Y, et al. Selective separation of lithium from high Mg/Li ratio brine using single-stage and multi-stage selective electrodialysis processes[J]. Desalination, 2020, 492: 114621. |
9 | Lu D, Yao Z K, Jiao L, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/ multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes, 2022, 2: 100032. |
10 | Sun X S, Wang X Z, Wan Y L, et al. Synthesis of functional ionic liquids with high extraction rate and electroconductivity for lithium-magnesium separation and metallic magnesium production from salt lake brine[J]. Chemical Engineering Journal, 2023, 452: 139610. |
11 | Wang R Y, Lin S H. Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects[J]. Journal of Membrane Science, 2021, 620: 118809. |
12 | Wang R Y, Biesheuvel P M, Elimelech M. Extended Donnan model for ion partitioning in charged nanopores: Application to ion-exchange membranes[J]. Journal of Membrane Science, 2024, 705: 122921. |
13 | Li Y, Zhao Y J, Wang H Y, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J]. Desalination, 2019, 468: 114081. |
14 | Peng H, Zhao Q. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Advanced Functional Materials, 2021, 31: 2009430. |
15 | Zhang H R, He Q M, Luo J Q, et al. Sharpening nanofiltration: strategies for enhanced membrane selectivity[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 39948-39966. |
16 | 叶海星, 陈宇昊, 陈仪, 等. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
Ye H X, Chen Y H, Chen Y, et al. Research progress of composite nanofiltration membrane for magnesium and lithium separation[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943. | |
17 | Li Q, Liu Y H, Jia Y L, et al. High performance Li+/Mg2+ separation membrane by grafted short chain amino-rich monomers[J]. Journal of Membrane Science, 2023, 677: 121634. |
18 | Zhang Y N, Yu D H, Jia C Y, et al. Advances and promotion strategies of membrane-based methods for extracting lithium from brine[J]. Desalination, 2023, 566: 116891. |
19 | Dey T K, Bindal R C, Prabhakar S, et al. Development, characterization and performance evaluation of positively-charged thin film-composite nanofiltration membrane containing fixed quaternary ammonium moieties[J]. Separation Science and Technology, 2011, 46(6): 933–943. |
20 | Zhao Y, Li N, Shi J, et al. Extra-thin composite nanofiltration membranes tuned by γ-cyclodextrins containing amphipathic cavities for efficient separation of magnesium/lithium ions[J]. Separation and Purification Technology, 2022, 286: 120419. |
21 | Li Q, Liu Y H, Ji Y H, et al. Mg2+/ Li+ separation by electric field assisted nanofiltration: the impacts of membrane pore structure, electric property and other process parameters[J]. Journal of Membrane Science, 2022, 662: 120982. |
22 | Staros J V, Wright R W, Swingle D M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions[J]. Analytical Biochemistry, 1986, 156(1): 220-222. |
23 | Peng J M, Su Y L, Chen W J, et al. Polyamide nanofiltration membrane with high separation performance prepared by EDC/NHS mediated interfacial polymerization[J]. Journal of Membrane Science, 2013, 427: 92-100. |
24 | Smith M B. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure[M]. 5th edition. Hoboken: Wiley,.2013 |
25 | 鲁丹, 向昕辰, 耿艺方, 等. 面向盐湖提锂的聚酰胺纳滤膜设计策略[J]. 盐湖研究, 2024. |
Lu D, Xiang X C, Geng Y F, et al. Design strategy of polyamide nanofiltration membrane for lithium extraction from salt lake brines[J]. Journal of Salt Lake Research, 2024. | |
26 | Zhai J, Balogun A, Bhattacharjee S, et al. Nanofiltration as pretreatment for lithium recovery from salt lake brine[J]. Journal of Membrane Science, 2024, 710: 123150. |
27 | Zhang S Y, Zhang R N, Li R L, et al. Guanidyl-incorporated nanofiltration membranes toward superior Li+/Mg2+ selectivity under weakly alkaline environment[J]. Journal of Membrane Science, 2022, 663: 121063. |
28 | Yuan B B, Zhao S H, Xu S J, et al. Aliphatic polyamide nanofilm with ordered nanostripe, synergistic pore size and charge density for the enhancement of cation sieving[J]. Journal of Membrane Science, 2022, 660: 120839. |
29 | Luo H, Peng H W, Zhao Q. High flux Mg2+/Li+ nanofiltration membranes prepared by surface modification of polyethylenimine thin film composite membranes[J]. Applied Surface Science, 2022, 579: 152161. |
30 | Ashraf M A, Wang J F, Wu B C, et al. Enhancement in Li+/Mg2+ separation from salt lake brine with PDA–PEI composite nanofiltration membrane[J]. Journal of Applied Polymer Science, 2020, 137(47): e49549. |
[1] | 唐宇昊, 张迎迎, 赵智伟, 鲁梦悦, 张飞飞, 王小青, 杨江峰. 弱极性超微孔Sc/In-CPM-66A用于CH4/N2吸附分离性能[J]. 化工学报, 2024, 75(9): 3210-3220. |
[2] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[3] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[4] | 王涛虹, 王超, 李政, 刘莹, 田歌, 常刚刚, 阳晓宇, 鲍宗必. 固载Cu(Ⅰ)的π络合MOF吸附剂用于乙烷/乙烯的选择性分离[J]. 化工学报, 2024, 75(7): 2565-2573. |
[5] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
[6] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[7] | 李泓宇, 刘祥坤, 施尧, 曹约强, 钱刚, 段学志. 颗粒分辨的乙炔选择性加氢固定床反应器数值模拟[J]. 化工学报, 2024, 75(10): 3610-3622. |
[8] | 刘家稳, 夏文成, 武锋, 彭耀丽, 谢广元. 废旧磷酸铁锂电池机械化学固相氧化回收锂机理[J]. 化工学报, 2024, 75(10): 3775-3782. |
[9] | 刘琦, 陈子康, 朴宇, 肖鹏, 葛亚粉, 巩雁军. 烃类催化裂解高选择性制低碳烯烃的分子筛催化剂[J]. 化工学报, 2024, 75(1): 120-137. |
[10] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[11] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[12] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[13] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[14] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[15] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 82
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||