化工学报 ›› 2025, Vol. 76 ›› Issue (11): 6058-6065.DOI: 10.11949/0438-1157.20250270
• 能源和环境工程 • 上一篇
栾俊1(
), 宋磊1, 葛明明1, 尚志杰1, 李小明1, 李刚1, 李新泽2, 杜文静2(
)
收稿日期:2025-03-18
修回日期:2025-06-17
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
杜文静
作者简介:栾俊(1978—),男,高级工程师,13969009366@163.com
基金资助:
Jun LUAN1(
), Lei SONG1, Mingming GE1, Zhijie SHANG1, Xiaoming LI1, Gang LI1, Xinze LI2, Wenjing DU2(
)
Received:2025-03-18
Revised:2025-06-17
Online:2025-11-25
Published:2025-12-19
Contact:
Wenjing DU
摘要:
面向“双碳”目标,提升热电联产系统灵活性成为关键,实现热电解耦是当前的紧迫任务。为此,基于Simulink构建配备电锅炉蓄热装置的热电联产模型,研究了系统的动态特性,运用NSGA-Ⅱ寻优算法和TOPSIS决策模型,协同优化经济性、环保性和供电能力。研究表明,引入电锅炉蓄热装置显著改善了热电联产系统性能。根据负荷利用率,提出电锅炉差异化运行策略:低负荷利用率阶段(≤0.2)采用蓄热优先模式,高负荷利用率阶段(≥0.7)采用直接供热模式,其他时段采用混合模式。此外,蓄热罐在电价峰值时段以最大功率放热的策略具有最佳经济效益。
中图分类号:
栾俊, 宋磊, 葛明明, 尚志杰, 李小明, 李刚, 李新泽, 杜文静. 配备电锅炉和蓄热装置的热电联产系统性能分析[J]. 化工学报, 2025, 76(11): 6058-6065.
Jun LUAN, Lei SONG, Mingming GE, Zhijie SHANG, Xiaoming LI, Gang LI, Xinze LI, Wenjing DU. Performance analysis of combined heat and power system equipped with electric boiler and thermal storage device[J]. CIESC Journal, 2025, 76(11): 6058-6065.
| 参数 | 330 MW机组 | 350 MW机组 |
|---|---|---|
| 设计功率/MW | 330 | 350 |
| 主蒸汽流量/(t/h) | 1002.88 | 983.25 |
| 主蒸汽温度/℃ | 537 | 566 |
| 主蒸汽压力/MPa | 16.67 | 24.2 |
| 再热蒸汽温度/℃ | 537 | 566 |
| 再热蒸汽压力/ MPa | 3.2 | 4.2 |
| 供热抽气温度/℃ | 343 | 343 |
| 供热抽气压力/MPa | 0.94 | 1.0493 |
| 排气压力/MPa | 0.0054 | 0.0054 |
表1 汽轮机核心设计参数
Table 1 Turbine core design parameters
| 参数 | 330 MW机组 | 350 MW机组 |
|---|---|---|
| 设计功率/MW | 330 | 350 |
| 主蒸汽流量/(t/h) | 1002.88 | 983.25 |
| 主蒸汽温度/℃ | 537 | 566 |
| 主蒸汽压力/MPa | 16.67 | 24.2 |
| 再热蒸汽温度/℃ | 537 | 566 |
| 再热蒸汽压力/ MPa | 3.2 | 4.2 |
| 供热抽气温度/℃ | 343 | 343 |
| 供热抽气压力/MPa | 0.94 | 1.0493 |
| 排气压力/MPa | 0.0054 | 0.0054 |
| 工况 | 热/电负荷/ MW | 参数 | 实际值 | 模拟值 | 误差/ % |
|---|---|---|---|---|---|
| 1 | 1392/815 | 汽轮机热耗率/(kJ/kWh) | 6708.15 | 6713.58 | 0.81 |
| 煤耗率/(kg/kWh) | 0.27161 | 0.27180 | 0.69 | ||
| 2 | 1280/824 | 汽轮机热耗率/(kJ/kWh) | 6359.64 | 6364.92 | 0.83 |
| 煤耗率/(kg/kWh) | 0.25977 | 0.25995 | 0.70 | ||
| 3 | 1522/1032 | 汽轮机热耗率/(kJ/kWh) | 6697.78 | 6703.34 | 0.83 |
| 煤耗率/(kg/kWh) | 0.26958 | 0.26977 | 0.71 | ||
| 4 | 1401/1061 | 汽轮机热耗率/(kJ/kWh) | 6472.76 | 6477.03 | 0.66 |
| 煤耗率/(kg/kWh) | 0.26106 | 0.26122 | 0.61 | ||
| 5 | 1273/1116 | 汽轮机热耗率/(kJ/kWh) | 6300.56 | 6303.53 | 0.47 |
| 煤耗率/(kg/kWh) | 0.25048 | 0.25063 | 0.59 |
表2 模型验证
Table 2 Model validation
| 工况 | 热/电负荷/ MW | 参数 | 实际值 | 模拟值 | 误差/ % |
|---|---|---|---|---|---|
| 1 | 1392/815 | 汽轮机热耗率/(kJ/kWh) | 6708.15 | 6713.58 | 0.81 |
| 煤耗率/(kg/kWh) | 0.27161 | 0.27180 | 0.69 | ||
| 2 | 1280/824 | 汽轮机热耗率/(kJ/kWh) | 6359.64 | 6364.92 | 0.83 |
| 煤耗率/(kg/kWh) | 0.25977 | 0.25995 | 0.70 | ||
| 3 | 1522/1032 | 汽轮机热耗率/(kJ/kWh) | 6697.78 | 6703.34 | 0.83 |
| 煤耗率/(kg/kWh) | 0.26958 | 0.26977 | 0.71 | ||
| 4 | 1401/1061 | 汽轮机热耗率/(kJ/kWh) | 6472.76 | 6477.03 | 0.66 |
| 煤耗率/(kg/kWh) | 0.26106 | 0.26122 | 0.61 | ||
| 5 | 1273/1116 | 汽轮机热耗率/(kJ/kWh) | 6300.56 | 6303.53 | 0.47 |
| 煤耗率/(kg/kWh) | 0.25048 | 0.25063 | 0.59 |
| 目标 | 熵值 | 差异系数 | 权重系数/% |
|---|---|---|---|
| 0.9128 | 0.0872 | 39.49 | |
| 0.9199 | 0.0801 | 36.26 | |
| 0.9465 | 0.0535 | 24.25 |
表3 熵权法
Table 3 Entropy weight method
| 目标 | 熵值 | 差异系数 | 权重系数/% |
|---|---|---|---|
| 0.9128 | 0.0872 | 39.49 | |
| 0.9199 | 0.0801 | 36.26 | |
| 0.9465 | 0.0535 | 24.25 |
| 发电收入/万元 | 碳排放/万吨 | 有效电量/GWh | |
|---|---|---|---|
| 优化策略 | 20326 | 270.1 | 2250.7 |
| 常规热电联产厂 | 18650 | 281.9 | 2167.6 |
表4 供暖季的实际效益提升
Table 4 Actual benefits improvement during the heating season
| 发电收入/万元 | 碳排放/万吨 | 有效电量/GWh | |
|---|---|---|---|
| 优化策略 | 20326 | 270.1 | 2250.7 |
| 常规热电联产厂 | 18650 | 281.9 | 2167.6 |
| [1] | Chen W D, Shao Y L, Bui D T, et al. Re-establishing and Elucidating the right operation strategy foundation for combined heat and power systems[J]. Sustainable Energy Technologies and Assessments, 2025, 73: 104091. |
| [2] | Mallapaty S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483. |
| [3] | Zhao T, Zheng Y N, Li G Y. Integrated unit commitment and economic dispatch of combined heat and power system considering heat-power decoupling retrofit of CHP unit[J]. International Journal of Electrical Power & Energy Systems, 2022, 143: 108498. |
| [4] | 张东, 李金平, 张涵. 基于沼气的热电气联供系统全工况模型与性能分析[J]. 化工学报, 2017, 68(5): 1998-2008. |
| Zhang D, Li J P, Zhang H. All operation mathematical model and thermal performance analysis on combined heating power and biogas system[J]. CIESC Journal, 2017, 68(5): 1998-2008. | |
| [5] | 杨干, 翟晓强, 郑春元, 等. 国内冷热电联供系统现状和发展趋势[J]. 化工学报, 2015, 66(S2): 1-9. |
| Yang G, Zhai X Q, Zheng C Y, et al. Present situation and development trend of combined cooling, heating and power system in China[J]. CIESC Journal, 2015, 66(S2): 1-9. | |
| [6] | 徐翔, 王远超, 张博. 基于喷射式热泵的热电联产供热系统[J]. 化工学报, 2014, 65(3): 1025-1032. |
| Xu X, Wang Y C, Zhang B. Cogeneration heating system based on ejector heat pumps[J]. CIESC Journal, 2014, 65(3): 1025-1032. | |
| [7] | Xin Y L, Zhao T, Chen X, et al. Heat current method-based real-time coordination of power and heat generation of multi-CHP units with flexibility retrofits[J]. Energy, 2022, 252: 124018. |
| [8] | Chen C X, Du X Z, Yang L Z, et al. Flexibility enhancement of combined heat and power unit integrated with source and grid-side thermal energy storage[J]. Energy, 2024, 312: 133568. |
| [9] | Zhu K Y, Zhang G M, Zhu C, et al. A bi-level optimization strategy for flexible and economic operation of the CHP units based on reinforcement learning and multi-objective MPC[J]. Applied Energy, 2025, 391: 125850. |
| [10] | Ma Y, Li Y P, Huang G H. Planning China's non-deterministic energy system (2021—2060) to achieve carbon neutrality[J]. Applied Energy, 2023, 334: 120673. |
| [11] | Wang C Y, Song J W. Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations[J]. Energy, 2023, 263: 125886. |
| [12] | Zhao Y L, Wang C Y, Liu M, et al. Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: a dynamic simulation[J]. Applied Energy, 2018, 212: 1295-1309. |
| [13] | Wang C Y, Zhao Y L, Liu M, et al. Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio[J]. Applied Energy, 2018, 216: 212-223. |
| [14] | Stevanovic V D, Ilic M, Djurovic Z, et al. Primary control reserve of electric power by feedwater flow rate change through an additional economizer-A case study of the thermal power plant “Nikola Tesla B”[J]. Energy, 2018, 147: 782-798. |
| [15] | Liu Z Z, Zheng Z H, Song J W, et al. Primary frequency regulation capacity enhancement of CHP units: control strategy combining high pressure valve adjustment and heating extraction steam adjustment[J]. Case Studies in Thermal Engineering, 2022, 35: 102097. |
| [16] | Liu M, Ma G F, Wang S, et al. Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111715. |
| [17] | Tian X, Deng S, Kang L G, et al. Study on heat and power decoupling for CCHP system: methodology and case study[J]. Applied Thermal Engineering, 2018, 142: 597-609. |
| [18] | Hou G L, Fan Y Z, Wang J J. Intelligent fuzzy neural network modeling for flexible operation of combined heat and power plant with heat-power decoupling technology[J]. Energy, 2024, 309: 133099. |
| [19] | 潘尔生, 田雪沁, 徐彤, 等. 火电灵活性改造的现状、关键问题与发展前景[J]. 电力建设, 2020, 41(9): 58-68. |
| Pan E S, Tian X Q, Xu T, et al. Status, critical problems and prospects of flexibility retrofit of thermal power in China[J]. Electric Power Construction, 2020, 41(9): 58-68. | |
| [20] | Mostafavi Tehrani S S, Saffar-Avval M, Behboodi Kalhori S, et al. Hourly energy analysis and feasibility study of employing a thermocline TES system for an integrated CHP and DH network[J]. Energy Conversion and Management, 2013, 68: 281-292. |
| [21] | Wang J W, You S, Zong Y, et al. Investigation of real-time flexibility of combined heat and power plants in district heating applications[J]. Applied Energy, 2019, 237: 196-209. |
| [22] | 薛朝囡, 杨荣祖, 王汀, 等. 汽轮机高低旁路联合供热在超临界350 MW机组上的应用[J]. 热力发电, 2018, 47(5): 101-105. |
| Xue Z N, Yang R Z, Wang T, et al. Application of turbine HP-LP bypass system combining with heating in supercritical 350 MW unit[J]. Thermal Power Generation, 2018, 47(5): 101-105. | |
| [23] | Jin T. Estimating the potential of power-to-heat (P2H) in 2050 energy system for the net-zero of South Korea[J]. Energy, 2025, 314: 134206. |
| [24] | Chen X Y, Kang C Q, O'Malley M, et al. Increasing the flexibility of combined heat and power for wind power integration in China: modeling and implications[J]. IEEE Transactions on Power Systems, 2015, 30(4): 1848-1857. |
| [25] | Wojcik J, Wang J H. Technical feasibility study of thermal energy storage integration into the conventional power plant cycle[J]. Energies, 2017, 10(2): 205. |
| [26] | Lai F, Wang S, Liu M, et al. Operation optimization on the large-scale CHP station composed of multiple CHP units and a thermocline heat storage tank[J]. Energy Conversion and Management, 2020, 211: 112767. |
| [27] | Liu M, Wang S, Zhao Y L, et al. Heat-power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance[J]. Energy, 2019, 188: 116074. |
| [28] | Nielsen M G, Morales J M, Zugno M, et al. Economic valuation of heat pumps and electric boilers in the Danish energy system[J]. Applied Energy, 2016, 167: 189-200. |
| [29] | Cho H, Sarwar R, Mago P J, et al. Design and feasibility study of combined heat and power systems integrated with heat pump[J]. Applied Thermal Engineering, 2016, 93: 155-165. |
| [30] | Blarke M B. Towards an intermittency-friendly energy system: comparing electric boilers and heat pumps in distributed cogeneration[J]. Applied Energy, 2012, 91(1): 349-365. |
| [31] | Münster M, Morthorst P E, Larsen H V, et al. The role of district heating in the future Danish energy system[J]. Energy, 2012, 48(1): 47-55. |
| [32] | Yu J, Guo L, Ma M N, et al. Risk assessment of integrated electrical, natural gas and district heating systems considering solar thermal CHP plants and electric boilers[J]. International Journal of Electrical Power & Energy Systems, 2018, 103: 277-287. |
| [33] | Sinha R, Bak-Jensen B, Radhakrishna Pillai J, et al. Flexibility from electric boiler and thermal storage for multi energy system interaction[J]. Energies, 2020, 13(1): 98. |
| [34] | Zhang L D, Ma C, Wang L, et al. Theoretical analysis and economic evaluation of wind power consumption by electric boiler and heat storage tank for distributed heat supply system[J]. Electric Power Systems Research, 2024, 228: 110060. |
| [35] | Liang G Z, Zhang X M, Ding C L, et al. Energy flow tracking of integrated energy system with electric thermal storage boiler[J]. Journal of Physics: Conference Series, 2024, 2838(1): 012029. |
| [36] | Lu S L, Wei H S, Jia Y B, et al. A control method of electric boiler phase change thermal storage heating system based on dual-time scale load prediction model[J]. Journal of Energy Storage, 2025, 107: 114959. |
| [37] | Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
| [1] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [2] | 张文锋, 郭玮, 张新玉, 曹昊敏, 丁国良. 铝管铝翅片换热器模型开发及软件实现[J]. 化工学报, 2025, 76(S1): 84-92. |
| [3] | 吴成云, 孙浩然. 民用飞机空调系统性能仿真与燃油代偿损失研究[J]. 化工学报, 2025, 76(S1): 351-359. |
| [4] | 卓森庆, 陈华, 陈伟, 尚彬, 刘恒恒, 古汤汤, 白韡, 王龙炎, 曹昊敏, 丁国良. 多联式空调系统APF性能仿真的模型开发与软件实现[J]. 化工学报, 2025, 76(S1): 370-376. |
| [5] | 周怀荣, 伊嘉伟, 曹阿波, 郭奥雪, 王东亮, 杨勇, 杨思宇. 共电解耦合CO2间接加氢制甲醇工艺集成设计与性能评价[J]. 化工学报, 2025, 76(9): 4586-4600. |
| [6] | 田鹏, 张忠林, 任超, 孟国超, 郝晓刚, 刘叶刚, 侯起旺, ABUDULA Abuliti, 官国清. 基于自热再生的一种低温甲醇洗工艺建模与优化[J]. 化工学报, 2025, 76(9): 4601-4612. |
| [7] | 周奕彤, 周明熙, 刘若晨, 叶爽, 黄伟光. 光伏与电网协同驱动氢基直接还原铁炼钢的技术经济分析[J]. 化工学报, 2025, 76(8): 4318-4330. |
| [8] | 赫亚庆, 王维庆, 池映天, 李佳蓉, 王海云, 张新燕, 刘博文. 考虑不均匀性的SOEC电堆3D建模优化分析[J]. 化工学报, 2025, 76(8): 4129-4144. |
| [9] | 王一非, 任婧杰, 毕明树, 叶昊天. 基于本质安全与经济性的环己烷氧化工艺参数多目标优化研究[J]. 化工学报, 2025, 76(6): 2722-2732. |
| [10] | 向晓彤, 段旭东, 王斯民. 多目标优化驱动的PEM电解槽性能研究[J]. 化工学报, 2025, 76(6): 2626-2637. |
| [11] | 张冰, 李建惠, 马欣蓉, 陈杨, 李晋平, 李立博. 蒸气相辅助法制备MOF基材料的研究进展[J]. 化工学报, 2025, 76(5): 2026-2041. |
| [12] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [13] | 王宗廷, 王丽丽, 孙晓岩, 夏力, 陶少辉, 项曙光. 基于简化相平衡关联式的高效简捷精馏塔模型[J]. 化工学报, 2025, 76(3): 1133-1142. |
| [14] | 李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206. |
| [15] | 方筑, 廖亚琴, 张乾, 张易阳, 李水清. 基于随机弹道沉积方法的黏附性椭球颗粒疏松堆积极限的研究[J]. 化工学报, 2025, 76(11): 5533-5543. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号