化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5128-5140.DOI: 10.11949/0438-1157.20250335
金雨昕1(
), 吴文莉1, 童婳1, 叶代启1,2,3, 陈礼敏1,2,3(
)
收稿日期:2025-04-02
修回日期:2025-06-23
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
陈礼敏
作者简介:金雨昕(2000—),女,硕士研究生,1005458648@qq.com
基金资助:
Yuxin JIN1(
), Wenli WU1, Hua TONG1, Daiqi YE1,2,3, Limin CHEN1,2,3(
)
Received:2025-04-02
Revised:2025-06-23
Online:2025-10-25
Published:2025-11-25
Contact:
Limin CHEN
摘要:
为了获得具有高CO2氧化乙烷脱氢制乙烯活性的Co基催化剂,依次通过离子交换法及浸渍法制备了一系列Co/SSZ-13催化剂。通过Raman、XPS等表征手段探究了Co物种的落位和价态,并基于本课题组提出的反应路径分析方法揭示了高分散双位点Co物种协同催化CO2氧化乙烷脱氢制乙烯的机理。结果表明,在离子交换法基础上通过浸渍在催化剂上二次负载Co物种能够有效提升催化剂活性,675℃时乙烯收率由23.46%升至38.20%;离子交换法主要在分子筛上锚定高度分散的Co(Ⅱ)物种,其表现出良好的直接脱氢活性;在此基础上进行浸渍能够在表面负载Co3O4物种,其在反应过程中还原为Co0物种从而促进逆水煤气反应,进而提升催化剂的表观氧化脱氢性能。然而,当浸渍负载量过高时,Co3O4物种在反应过程中原位还原为低分散度的Co0物种,降低了催化剂乙烯选择性。本文揭示了双位点Co物种的协同机制,指出需精准调控催化剂原始双位点比例以兼顾活性和稳定性。
中图分类号:
金雨昕, 吴文莉, 童婳, 叶代启, 陈礼敏. 高分散双位点Co物种协同催化CO2氧化乙烷脱氢制乙烯的研究[J]. 化工学报, 2025, 76(10): 5128-5140.
Yuxin JIN, Wenli WU, Hua TONG, Daiqi YE, Limin CHEN. Study on synergistic catalysis by highly dispersed dual-site Co species for CO2-oxidative dehydrogenation of ethane to ethylene[J]. CIESC Journal, 2025, 76(10): 5128-5140.
| 催化剂 | BET比表 面积/(m2·g-1) | t-plot 比表面积/(m2·g-1) | 总孔容积/(cm³·g-1) | HK-O微孔孔容/(cm³·g-1) |
|---|---|---|---|---|
| 0.8Co-SSZ-13 | 942 | 932 | 0.39 | 0.35 |
| 0.8+0.3%@Co-SSZ-13 | 940 | 923 | 0.38 | 0.35 |
| 0.8+0.4%@Co-SSZ-13 | 707 | 697 | 0.29 | 0.27 |
| 0.8+0.6%@Co-SSZ-13 | 693 | 684 | 0.28 | 0.26 |
| 0.8+0.8%@Co-SSZ-13 | 688 | 669 | 0.28 | 0.25 |
表1 浸渍煅烧后催化剂的孔结构性质
Table 1 The pore textural properties after impregnation
| 催化剂 | BET比表 面积/(m2·g-1) | t-plot 比表面积/(m2·g-1) | 总孔容积/(cm³·g-1) | HK-O微孔孔容/(cm³·g-1) |
|---|---|---|---|---|
| 0.8Co-SSZ-13 | 942 | 932 | 0.39 | 0.35 |
| 0.8+0.3%@Co-SSZ-13 | 940 | 923 | 0.38 | 0.35 |
| 0.8+0.4%@Co-SSZ-13 | 707 | 697 | 0.29 | 0.27 |
| 0.8+0.6%@Co-SSZ-13 | 693 | 684 | 0.28 | 0.26 |
| 0.8+0.8%@Co-SSZ-13 | 688 | 669 | 0.28 | 0.25 |
| [14] | Alamdari A, Karimzadeh R, Abbasizadeh S. Present state of the art of and outlook on oxidative dehydrogenation of ethane: catalysts and mechanisms[J]. Reviews in Chemical Engineering, 2021, 37(4): 481-532. |
| [15] | Bikbaeva V, Nesterenko N, Konnov S, et al. A low carbon route to ethylene: ethane oxidative dehydrogenation with CO2 on embryonic zeolite supported Mo-carbide catalyst[J]. Applied Catalysis B: Environmental, 2023, 320: 122011. |
| [16] | Gomez E, Yan B H, Kattel S, et al. Carbon dioxide reduction in tandem with light-alkane dehydrogenation[J]. Nature Reviews Chemistry, 2019, 3(11): 638-649. |
| [17] | Chen M, Liu H, Wang Y, et al. Cobalt catalyzed ethane dehydrogenation to ethylene with CO2: relationships between cobalt species and reaction pathways[J]. Journal of Colloid and Interface Science, 2024, 660: 124-135. |
| [18] | Jalid F, Khan T S, Ali Haider M. CO2 reduction and ethane dehydrogenation on transition metal catalysts: mechanistic insights, reactivity trends and rational design of bimetallic alloys[J]. Catalysis Science & Technology, 2021, 11(1): 97-115. |
| [19] | Koirala R, Safonova O V, Pratsinis S E, et al. Effect of cobalt loading on structure and catalytic behavior of CoO x /SiO2 in CO2-assisted dehydrogenation of ethane[J]. Applied Catalysis A: General, 2018, 552: 77-85. |
| [20] | Liu P Y, Zhang L N, Wang X B, et al. Preparation, structure-performance relationship, and reaction network of ZnZSM-5 for oxidative dehydrogenation of ethane with CO2 [J]. Chemistry – A European Journal, 2023, 29(22): e202203960. |
| [21] | Rigamonti M G, Shah M, Gambu T G, et al. Reshaping the role of CO2 in propane dehydrogenation: from waste gas to platform chemical[J]. ACS Catalysis, 2022, 12 (15): 9339–9358. |
| [22] | 李亚男, 郭晓红, 周广栋, 等. Co-MCM-41和Co-MCM-48分子筛的合成与表征及其对临CO2乙烷脱氢反应的催化性能[J]. 催化学报, 2005, 26(7): 591-596. |
| Li Y N, Guo X H, Zhou G D, et al. Synthesis characterization and catalytic activity of Co-MCM-41 and Co-MCM-48 for CO2-dehydrogenation of ethane[J]. Chinese Journal of Catalysis, 2005, 26(7): 591-596. | |
| [23] | Hu B, Getsoian A, Schweitzer N M, et al. Selective propane dehydrogenation with single-site CoⅡ on SiO2 by a non-redox mechanism[J]. Journal of Catalysis, 2015, 322: 24-37. |
| [24] | Wang G W, Jiang Y X, Zhang S, et al. Insight into the active co phase of Co/Al2O3 catalyst for ethane dehydrogenation[J]. Catalysis Letters, 2022, 152(10): 2971-2979. |
| [25] | Fung V, Tao F, Jiang D E. Understanding oxidative dehydrogenation of ethane on Co3O4 nanorods from density functional theory[J]. Catalysis Science & Technology, 2016, 6(18): 6861-6869. |
| [26] | Tyo E C, Yin C R, Di Vece M, et al. Oxidative dehydrogenation of cyclohexane on cobalt oxide (Co3O4) nanoparticles: the effect of particle size on activity and selectivity[J]. ACS Catalysis, 2012, 2(11): 2409-2423. |
| [27] | Zheng Y B, Zhang X B, Li J J, et al. CO2-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts[J]. Chinese Journal of Catalysis, 2024, 65: 40-69. |
| [28] | Sun Y N, Gao Y N, Wu Y M, et al. Effect of sulfate addition on the performance of Co/Al2O3 catalysts in catalytic dehydrogenation of propane[J]. Catalysis Communications, 2015, 60: 42-45. |
| [29] | Wang M R, Zhang G H, Zhu J, et al. Unraveling the tunable selectivity on cobalt oxide and metallic cobalt sites for CO2 hydrogenation[J]. Chemical Engineering Journal, 2022, 446: 137217. |
| [30] | Lippens B. Studies on pore systems in catalysts:the V-t Method[J]. Journal of Catalysis, 1965, 4(3): 319-323. |
| [31] | Mofrad A M, Peixoto C, Blumeyer J, et al. Vibrational spectroscopy of sodalite: theory and experiments[J]. The Journal of Physical Chemistry C, 2018, 122(43): 24765-24779. |
| [32] | Zhang J, Chu Y Y, Liu X L, et al. Interzeolite transformation from FAU to CHA and MFI zeolites monitored by UV Raman spectroscopy[J]. Chinese Journal of Catalysis, 2019, 40(12): 1854-1859. |
| [33] | Núñez F, Chen L F, Wang J A, et al. Bifunctional Co3O4/ZSM-5 mesoporous catalysts for biodiesel production via esterification of unsaturated omega-9 oleic acid[J]. Catalysts, 2022, 12(8): 900. |
| [34] | Wu L Z, Fu Z Y, Wei J H, et al. The investigation into the dehydroaromatization of ethane over cobalt-modified ZSM-5 catalyst[J]. Microporous and Mesoporous Materials, 2022, 343: 112159. |
| [35] | Koirala R, Buechel R, Pratsinis S E, et al. Silica is preferred over various single and mixed oxides as support for CO2-assisted cobalt-catalyzed oxidative dehydrogenation of ethane[J]. Applied Catalysis A: General, 2016, 527: 96-108. |
| [36] | Chen C, Zhang S M, Wang Z, et al. Ultrasmall Co confined in the silanols of dealuminated beta zeolite: a highly active and selective catalyst for direct dehydrogenation of propane to propylene[J]. Journal of Catalysis, 2020, 383: 77-87. |
| [37] | Charrad R, Solt H E, Domján A, et al. Selective catalytic reduction of NO by methane over Co, H-SSZ-13 catalysts: types and catalytic functions of active Co sites[J]. Journal of Catalysis, 2020, 385: 87-102. |
| [38] | Zhang X Y, Shen Q, He C, et al. Decomposition of nitrous oxide over co-zeolite catalysts: role of zeolite structure and active site[J]. Catalysis Science & Technology, 2012, 2(6): 1249-1258. |
| [1] | Mora C, Spirandelli D, Franklin E C, et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions[J]. Nature Climate Change, 2018, 8(12): 1062-1071. |
| [2] | Liu J X, Zhang Z M, Jiang Y L, et al. Influence of the zeolite surface properties and potassium modification on the Zn-catalyzed CO2-assisted oxidative dehydrogenation of ethane[J]. Applied Catalysis B: Environmental, 2022, 304: 120947. |
| [3] | 谢卫东. 炼厂气中碳二回收工艺技术选择及工业应用[J]. 石油石化绿色低碳, 2018, 3(6): 3-7. |
| Xie W D. Selection of C2 recovery process fom refnery off-gas and its industrial application[J]. Green Petroleum & Petrochemicals, 2018, 3(6): 3-7. | |
| [4] | Amghizar I, Dedeyne J N, Brown D J, et al. Sustainable innovations in steam cracking: CO2 neutral olefin production[J]. Reaction Chemistry & Engineering, 2020, 5(2): 239-257. |
| [5] | 徐海丰. 全球乙烯产业格局变化及发展前景分析[J]. 国际石油经济, 2023, 31(1):65-82. |
| Xu H F. The change and development prospect of global ethylene industry[J]. International Petroleum Economics, 2023, 31(1): 65-82. | |
| [6] | 周强. 乙烷替代石脑油制乙烯分析探讨[J]. 齐鲁石油化工, 2017, 45(1): 79-82. |
| Zhou Q. Analysis and discussion on preparation of ethylene from ethane replacing naphtha[J]. Qilu Petrochemical Technology, 2017, 45(1): 79-82. | |
| [7] | 张来勇. 大型乙烯成套技术[M]. 北京: 石油工业出版社, 2022. |
| Zhang L Y. Large Scale Ethylene Integrated Technology [M]. Beijing: Petroleum Industry Press, 2022. | |
| [8] | Gärtner C A, van Veen A C, Lercher J A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects[J]. ChemCatChem, 2013, 5(11): 3196-3217. |
| [9] | Gao Y F, Neal L, Ding D, et al. Recent advances in intensified ethylene production: a review[J]. ACS Catalysis, 2019, 9(9): 8592-8621. |
| [10] | 何盛宝, 侯雨璇, 王红秋. 双碳目标下乙烯生产技术发展趋势[J]. 现代化工, 2022, 42 (8): 60-64. |
| He S B, Hou Y X, Wang H Q. Development trend of ethylene production technology under “carbon emission peaking” and “carbon neutrality” target[J]. Modern Chemical Industry, 2022, 42 (8): 60-64. | |
| [39] | Dai Y H, Wu Y, Dai H, et al. Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation[J]. Journal of Catalysis, 2021, 395: 105-116. |
| [40] | Gounden N, Friedrich H B, Mahadevaiah N, et al. Octenes and aromatics from the oxidative dehydrogenation of n-octane over Co/TiO2 catalysts[J]. Catalysis Letters, 2014, 144(12): 2043-2051. |
| [41] | Madduluri V R, Marella R K, Hanafiah M M, et al. CO2 utilization as a soft oxidant for the synthesis of styrene from ethylbenzene over Co3O4 supported on magnesium aluminate spinel: role of spinel activation temperature[J]. Scientific Reports, 2020, 10: 22170. |
| [42] | Jin Y X, Wang Y, Wang C F, et al. CO2 oxidative dehydrogenation of ethane to ethylene: reaction mechanism elucidation by tandem-reaction couplings[J]. Journal of Catalysis, 2025, 450: 116265. |
| [43] | Yao R, Pinals J, Dorakhan R, et al. Cobalt-molybdenum oxides for effective coupling of ethane activation and carbon dioxide reduction catalysis[J]. ACS Catalysis, 2022, 12(19): 12227-12245. |
| [44] | Zhang Y K, Wang W, Zhou L, et al. An active and stable catalyst of Zn modified Pt nanoparticles encapsulated within silicalite-1 zeolite for dehydrogenation of ethane[J]. Applied Surface Science, 2024, 648: 159099. |
| [45] | Qiu B C, Zhang Y K, Liu Y, et al. The state of Pt active phase and its surrounding environment during dehydrogenation of ethane to ethylene[J]. Applied Surface Science, 2021, 554: 149611. |
| [46] | Vishnuvarthan M, Murugesan V, Gianotti E, et al. Coexistence of framework Co2+ and non framework Co0 in CoAPO-5[J]. Microporous and Mesoporous Materials, 2009, 123: 91-99. |
| [47] | Wong M S, Huang H C, Ying J Y. Supramolecular-templated synthesis of nanoporous zirconia-silica catalysts[J]. Chemistry of Materials, 2002, 14(5): 1961-1973. |
| [48] | Sola A C, Homs N, de la Piscina P R. An in situ DRIFTS-MS study of the photocatalytic H2 production from ethanol(aq) vapour over Pt/TiO2 and Pt Ga/TiO2 catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(35): 16922-16928. |
| [49] | Xu D, Ding M Y, Hong X L, et al. Mechanistic aspects of the role of K promotion on Cu-Fe-based catalysts for higher alcohol synthesis from CO2 hydrogenation[J]. ACS Catalysis, 2020, 10(24): 14516-14526. |
| [50] | Fu Q J, Wang S, Wang T, et al. Insights into the promotion mechanism of ceria-zirconia solid solution to ethane combustion over Pt-based catalysts[J]. Journal of Catalysis, 2022, 405: 129-139. |
| [11] | 杨亮, 宋庚哲, 廖多华, 等. CO2气氛下乙烷氧化脱氢制乙烯催化剂研究进展[J]. 精细化工, 2023, 40(10): 2171-2179. |
| Yang L, Song G Z, Liao D H, et al. Research progress on catalysts for oxidative dehydrogenation of ethane to ethylene under CO2 atmosphere[J]. Fine Chemicals, 2023, 40(10): 2171-2179. | |
| [12] | 刘欢, 王樱, 陈铭, 等. Co负载量对Co/TiZrO4催化CO2氧化乙烷脱氢制乙烯反应性能的影响[J]. 环境科学学报, 2022, 43(2):433-446. |
| Liu H, Wang Y, Chen M, et al. Effects of Co loading on the performance of Co/TiZrO4 catalysts for CO2 oxidative ethane dehydrogenation to ethylene[J]. Acta Scientiae Circumstantiae, 2022, 2: 433-446. | |
| [13] | 王樱,陈铭,钟智勇,等. 硅铝比对Co/SSZ-13催化CO2氧化乙烷脱氢制乙烯反应性能的影响[J]. 环境科学学报, 2023, 10: 331-342. |
| Wang Y, Chen M, Zhong Z Y, et al.Effects of Si/Al on the catalytic performance of Co/SSZ-13 catalysts for CO2 oxidative ethane dehydrogenation to ethylene[J]. Acta Scientiae Circumstantiae, 2023, 10: 331-342. |
| [1] | 赵维, 邢文乐, 韩朝旭, 袁兴中, 蒋龙波. g-C3N4基非金属异质结光催化降解水中有机污染物的研究进展[J]. 化工学报, 2025, 76(9): 4752-4769. |
| [2] | 周怀荣, 伊嘉伟, 曹阿波, 郭奥雪, 王东亮, 杨勇, 杨思宇. 共电解耦合CO2间接加氢制甲醇工艺集成设计与性能评价[J]. 化工学报, 2025, 76(9): 4586-4600. |
| [3] | 钱慧慧, 王文婕, 陈文尧, 周兴贵, 张晶, 段学志. 聚丙烯定向转化制芳烃:金属-分子筛协同催化机制[J]. 化工学报, 2025, 76(9): 4838-4849. |
| [4] | 佟丽丽, 陈英, 艾敏华, 舒玉美, 张香文, 邹吉军, 潘伦. ZnO/WO3异质结光催化环烯烃[2+2]环加成制备高能量密度燃料[J]. 化工学报, 2025, 76(9): 4882-4892. |
| [5] | 李泽权, 蔡天宇, 刘家骏, 陈奇志, 肖沛文, 徐小飞, 赵双良. 木质素基絮凝剂的合成与应用[J]. 化工学报, 2025, 76(9): 4709-4722. |
| [6] | 巢欣旖, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 甲醇和乙酸甲酯一步法制丙酸甲酯催化剂的可控制备与性能调控[J]. 化工学报, 2025, 76(8): 4030-4041. |
| [7] | 周媚, 曾浩桀, 蒋火炎, 蒲婷, 曾星星, 刘宝玉. 二次晶化法改性合成MTW分子筛及其在苯和环己烯烷基化反应中的催化性能[J]. 化工学报, 2025, 76(8): 4071-4080. |
| [8] | 戴元燊, 邵之江, 陈伟锋, 陈宁. 基于粒数衡算方程的三元前体结晶过程粒度分布动态预测方法[J]. 化工学报, 2025, 76(8): 4119-4128. |
| [9] | 范夏雨, 孙建辰, 李可莹, 姚馨雅, 商辉. 机器学习驱动液态有机储氢技术的系统优化[J]. 化工学报, 2025, 76(8): 3805-3821. |
| [10] | 杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094. |
| [11] | 徐鹏国, 孟子衡, 朱干宇, 李会泉, 王晨晔, 孙振华, 田国才. 粗碳酸锂CO2微气泡深度碳化工艺与动力学研究[J]. 化工学报, 2025, 76(7): 3325-3338. |
| [12] | 赵世颖, 左志帅, 贺梦颖, 安华良, 赵新强, 王延吉. Co-Pt/HAP的制备及其催化1,2-丙二醇氨化反应[J]. 化工学报, 2025, 76(7): 3305-3315. |
| [13] | 范振宁, 梁海宁, 房茂立, 赫一凡, 于帅, 闫兴清, 安佳然, 乔帆帆, 喻健良. CO2管道不同相态节流放空特性研究与对比[J]. 化工学报, 2025, 76(7): 3742-3751. |
| [14] | 陆学瑞, 周帼彦, 方琦, 俞孟正, 张秀成, 涂善东. 固体氧化物燃料电池外重整器积炭效应数值模拟研究[J]. 化工学报, 2025, 76(7): 3295-3304. |
| [15] | 李愽龙, 蒋雨希, 任傲天, 秦雯琪, 傅杰, 吕秀阳. TS-1/In-TS-1催化果糖一步法醇解制备乳酸甲酯连续化试验[J]. 化工学报, 2025, 76(6): 2678-2686. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号