化工学报 ›› 2025, Vol. 76 ›› Issue (10): 5076-5092.DOI: 10.11949/0438-1157.20250374
刘子琦1,2(
), 王吉1,2(
), 俞海1, 张宇宁1,2
收稿日期:2025-04-10
修回日期:2025-05-14
出版日期:2025-10-25
发布日期:2025-11-25
通讯作者:
王吉
作者简介:刘子琦(1999—),女,博士研究生,liuziqi0212@163.com
基金资助:
Ziqi LIU1,2(
), Ji WANG1,2(
), Hai YU1, Yuning ZHANG1,2
Received:2025-04-10
Revised:2025-05-14
Online:2025-10-25
Published:2025-11-25
Contact:
Ji WANG
摘要:
针对FC-72在具有可弹性变形壁面的PDMS矩形微通道中的冷凝流动特性进行了实验研究,采用截面为300 μm×150 μm的微通道,质量流率为290和482 kg/(m²·s)、入口干度为0.1~0.9。通过高速摄像系统捕捉两相流型的演变过程,并采用白光共焦同轴位移计实时测量壁面变形量。实验结果表明,流型为间歇流时,液塞流经位置的壁面呈现显著的厚度增加现象,且壁厚变化率与质量流率及干度呈正相关。分析发现,表面张力作用不足以解释实验中观测到的壁面变形程度。进一步研究表明,弹性壁面厚度的变化主要来源于液塞内部的局部压降,这种压降是由冷凝过程中气体液化导致细长气泡收缩所引发的。当冷凝速率达到一定程度时,液塞内部将产生显著的局部压降,从而驱动弹性壁向通道内部移动。基于上述机理,建立了预测由于内部流动凝结导致微通道弹性壁面变形的理论模型,该模型在高干度条件下与实验测量结果表现出良好的一致性。
中图分类号:
刘子琦, 王吉, 俞海, 张宇宁. PDMS微通道冷凝流动导致弹性壁面变形的研究[J]. 化工学报, 2025, 76(10): 5076-5092.
Ziqi LIU, Ji WANG, Hai YU, Yuning ZHANG. Condensation flow in PDMS microchannels with detectable wall deformation caused by flow condensation[J]. CIESC Journal, 2025, 76(10): 5076-5092.
| 设备 | 型号 | 基本参数和精确度 |
|---|---|---|
| 磁力驱动齿轮泵 | 3030-045-B-MK11 | 最大耐压1.2 MPa,2900 r/min |
| 恒温水浴 | THX-0510 | -5~100℃,±0.1℃ |
| 直流电源 | SS-K6010SPD | 60 V±0.1 V,10 A±0.1 A |
| 科里奥利质量流量计 | DMF-1-B | 30 kg/h,±0.2% |
| 压力变送器 | EJA110A | 0~100 kPa,±0.1% |
| 数据采集器 | Agilent 34970A | ±0.004% |
| 高速摄像机 | Photron Mini UX50 | 最大像素1280×1024,最大拍摄速率2000 帧/s |
表1 实验装置
Table 1 Experimental apparatuses
| 设备 | 型号 | 基本参数和精确度 |
|---|---|---|
| 磁力驱动齿轮泵 | 3030-045-B-MK11 | 最大耐压1.2 MPa,2900 r/min |
| 恒温水浴 | THX-0510 | -5~100℃,±0.1℃ |
| 直流电源 | SS-K6010SPD | 60 V±0.1 V,10 A±0.1 A |
| 科里奥利质量流量计 | DMF-1-B | 30 kg/h,±0.2% |
| 压力变送器 | EJA110A | 0~100 kPa,±0.1% |
| 数据采集器 | Agilent 34970A | ±0.004% |
| 高速摄像机 | Photron Mini UX50 | 最大像素1280×1024,最大拍摄速率2000 帧/s |
| 参数 | 不确定性 |
|---|---|
| 温度(RTD) | ±0.1℃ |
| 质量流速 | ±0.2%[0~1000 kg/(m2‧s)] |
| 压力 | ±0.3%(0~6 MPa) |
| 时间 | ±18.5 ns |
| 长度 | ±0.1 mm |
| 变形量 | ±0.001 mm |
表2 误差分析
Table 2 Uncertainties for all measurements
| 参数 | 不确定性 |
|---|---|
| 温度(RTD) | ±0.1℃ |
| 质量流速 | ±0.2%[0~1000 kg/(m2‧s)] |
| 压力 | ±0.3%(0~6 MPa) |
| 时间 | ±18.5 ns |
| 长度 | ±0.1 mm |
| 变形量 | ±0.001 mm |
| [1] | Wang H S, Rose J W. Film condensation in horizontal microchannels: effect of channel shape[J]. International Journal of Thermal Sciences, 2006, 45(12): 1205-1212. |
| [2] | Wang H S, Rose J W. Condensation in microchannels: detailed comparisons of annular laminar flow theory with measurements[J]. Journal of Heat Transfer, 2017, 139(7): 072403. |
| [3] | Gu X, Wen J, Zhang X, et al. Effect of tube shape on the condensation patterns of R1234ze (E) in horizontal mini-channels[J]. International Journal of Heat and Mass Transfer, 2019, 131: 121-139. |
| [4] | Garimella S, Agarwal A, Fronk B M. Condensation heat transfer in rectangular microscale geometries[J]. International Journal of Heat and Mass Transfer, 2016, 100: 98-110. |
| [5] | Wu H Y, Wu X Y, Qu J, et al. Condensation heat transfer and flow friction in silicon microchannels[J]. Journal of Micromechanics and Microengineering, 2008, 18(11): 115024. |
| [6] | Agarwal A, Bandhauer T M, Garimella S. Measurement and modeling of condensation heat transfer in non-circular microchannels[J]. International Journal of Refrigeration, 2010, 33(6): 1169-1179. |
| [7] | Liu N, Li J M, Sun J, et al. Heat transfer and pressure drop during condensation of R152a in circular and square microchannels[J]. Experimental Thermal and Fluid Science, 2013, 47: 60-67. |
| [8] | Quan X J, Cheng P, Wu H Y. An experimental investigation on pressure drop of steam condensing in silicon microchannels[J]. International Journal of Heat and Mass Transfer, 2008, 51(21/22): 5454-5458. |
| [9] | Thorsen T, Maerkl S J, Quake S R. Microfluidic large-scale integration[J]. Science, 2002, 298(5593): 580-584. |
| [10] | Khaled A A, Vafai K. Flow and heat transfer inside thin films supported by soft seals in the presence of internal and external pressure pulsations[J]. International Journal of Heat and Mass Transfer, 2002, 45(26): 5107-5115. |
| [11] | Khaled A A, Vafai K. Control of exit flow and thermal conditions using two-layered thin films supported by flexible complex seals[J]. International Journal of Heat and Mass Transfer, 2004, 47(8/9): 1599-1611. |
| [12] | Gervais T, El-Ali J, Günther A, et al. Flow-induced deformation of shallow microfluidic channels[J]. Lab on a Chip, 2006, 6(4): 500-507. |
| [13] | Zheng Y, Fujioka H, Bian S, et al. Liquid plug propagation in flexible microchannels: a small airway model[J]. Physics of Fluids, 2009, 21(7): 71903. |
| [14] | Hardy B S, Uechi K, Zhen J, et al. The deformation of flexible PDMS microchannels under a pressure driven flow[J]. Lab on a Chip, 2009, 9(7): 935-938. |
| [15] | Verma M, Kumaran V. A dynamical instability due to fluid-wall coupling lowers the transition Reynolds number in the flow through a flexible tube[J]. Journal of Fluid Mechanics, 2012, 705: 322-347. |
| [16] | Verma M, Kumaran V. A multifold reduction in the transition Reynolds number, and ultra-fast mixing, in a micro-channel due to a dynamical instability induced by a soft wall[J]. Journal of Fluid Mechanics, 2013, 727: 407-455. |
| [17] | Kang C, Roh C, Overfelt R A. Pressure-driven deformation with soft polydimethylsiloxane (PDMS) by a regular syringe pump: challenge to the classical fluid dynamics by comparison of experimental and theoretical results[J]. RSC Advances, 2014, 4(7): 3102-3112. |
| [18] | Cheung P, Toda-Peters K, Shen A Q. In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices[J]. Biomicrofluidics, 2012, 6(2): 26501. |
| [19] | Srinivas S S, Kumaran V. Transitions to different kinds of turbulence in a channel with soft walls[J]. Journal of Fluid Mechanics, 2017, 822: 267-306. |
| [20] | Srinivas S S, Kumaran V. After transition in a soft-walled microchannel[J]. Journal of Fluid Mechanics, 2015, 780: 649-686. |
| [21] | Ozsun O, Yakhot V, Ekinci K L. Non-invasive measurement of the pressure distribution in a deformable micro-channel[J]. Journal of Fluid Mechanics, 2013, 734: R1. |
| [22] | Li G, Xu S Y. Small diameter microchannel of PDMS and complex three-dimensional microchannel network[J]. Materials & Design, 2015, 81: 82-86. |
| [23] | Raj A, Sen A K. Flow-induced deformation of compliant microchannels and its effect on pressure-flow characteristics[J]. Microfluidics and Nanofluidics, 2016, 20(2): 31. |
| [24] | Raj M K, DasGupta S, Chakraborty S. Hydrodynamics in deformable microchannels[J]. Microfluidics and Nanofluidics, 2017, 21(4): 70. |
| [25] | Shidhore T C, Christov I C. Static response of deformable microchannels: a comparative modelling study[J]. Journal of Physics. Condensed Matter, 2018, 30(5): 054002. |
| [26] | Patne R, Giribabu D, Shankar V. Consistent formulations for stability of fluid flow through deformable channels and tubes[J]. Journal of Fluid Mechanics, 2017, 827: 31-66. |
| [27] | Niu P F, Nablo B J, Bhadriraju K, et al. Uncovering the contribution of microchannel deformation to impedance-based flow rate measurements[J]. Analytical Chemistry, 2017, 89(21): 11372-11377. |
| [28] | Raj A, Suthanthiraraj P P A, Sen A K. Pressure-driven flow through PDMS-based flexible microchannels and their applications in microfluidics[J]. Microfluidics and Nanofluidics, 2018, 22(11): 128. |
| [29] | Christov I C, Cognet V, Shidhore T C, et al. Flow rate-pressure drop relation for deformable shallow microfluidic channels[J]. Journal of Fluid Mechanics, 2018, 841: 267-286. |
| [30] | Wang X J, Christov I C. Reduced modelling and global instability of finite-Reynolds-number flow in compliant rectangular channels[J]. Journal of Fluid Mechanics, 2022, 802: 950-A26. |
| [31] | Wang X J, Christov I C. Theory of the flow-induced deformation of shallow compliant microchannels with thick walls[J]. Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2019, 475(2231): 20190513. |
| [32] | Martínez-Calvo A, Sevilla A, Peng G G, et al. Start-up flow in shallow deformable microchannels[J]. Journal of Fluid Mechanics, 2020, 885: A25. |
| [33] | Anand V, David J, Christov I C. Non-Newtonian fluid-structure interactions: static response of a microchannel due to internal flow of a power-law fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 264: 62-72. |
| [34] | Kiran R M, Chakraborty J, DasGupta S, et al. Flow-induced deformation in a microchannel with a non-Newtonian fluid[J]. Biomicrofluidics, 2018, 12(3): 034116. |
| [35] | Kang C, Overfelt R A, Roh C. Deformation properties between fluid and periodic circular obstacles in polydimethylsiloxane microchannels: experimental and numerical investigations under various conditions[J]. Biomicrofluidics, 2013, 7(5): 54102. |
| [36] | Roh C, Lee J, Kang C. The deformation of polydimethylsiloxane (PDMS) microfluidic channels filled with embedded circular obstacles under certain circumstances[J]. Molecules, 2016, 21(6): 798. |
| [37] | He X F, Chen R, Liao Q, et al. IR laser assisted photothermal condensation in a microchannel[J]. Chemical Engineering Science, 2014, 119: 288-294. |
| [38] | Korniliou S, Mackenzie-Dover C, Christy J R E, et al. Two-dimensional heat transfer coefficients with simultaneous flow visualisations during two-phase flow boiling in a PDMS microchannel[J]. Applied Thermal Engineering, 2018, 130: 624-636. |
| [39] | Li W M, Joshi Y. Capillary-assisted evaporation/boiling in PDMS microchannel integrated with wicking microstructures[J]. Langmuir, 2020, 36(41): 12143-12149. |
| [40] | 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 5版. 北京: 中国建筑工业出版社, 2007: 168-170. |
| Zhang X M, Ren Z P, Mei F M. Heat Transmission Science[M]. 5th ed. Beijing: China Architecture & Building Press, 2007: 168-170. | |
| [41] | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. |
| [42] | 丁勇. 矩形微通道内制冷剂流动冷凝传热特性研究[D]. 北京: 北京交通大学, 2019. |
| Ding Y. Study on heat transfer characteristics of refrigerant flow condensation in rectangular microchannel[D]. Beijing: Beijing Jiaotong University, 2019. | |
| [43] | Wang Z X. Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques[D]. Tampa: University of South Florida, 2011. |
| [44] | Fuard D, Tzvetkova-Chevolleau T, Decossas S, et al. Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility[J]. Microelectronic Engineering, 2008, 85(5/6): 1289-1293. |
| [45] | Koyama S, Kuwahara K, Nakashita K. Condensation of refrigerant in a multi-port channel[C]//ASME International Conference on Microchannels & Minichannels. Rochester, New York, USA, 2003: 193-205. |
| [1] | 苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151. |
| [2] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [3] | 段炼, 周星睿, 袁文君, 陈飞. 连续相速度脉动对微通道内聚合物液滴生成和形貌的影响规律[J]. 化工学报, 2025, 76(9): 4578-4585. |
| [4] | 刘璐, 杨莹, 杨浩文, 王太, 王腾, 董新宇, 闫润. 星形亲水区组合表面冷凝液滴脱落特性实验研究[J]. 化工学报, 2025, 76(8): 3905-3914. |
| [5] | 龚路远, 果正龙, 赵登辉, 郭亚丽, 周健, 韩倩倩, 沈胜强. 不同疏水性表面冷凝传热性能及动力学特征研究[J]. 化工学报, 2025, 76(8): 3932-3943. |
| [6] | 陈科拯, 高蓬辉, 焉富春, 程博. 考虑液滴动态行为的亲-疏水复合结构表面冷凝特性影响因素分析[J]. 化工学报, 2025, 76(8): 3976-3989. |
| [7] | 佘海龙, 胡光忠, 崔晓钰, 柳忠彬, 彭帝, 李航. 不同节流工质下叠层微通道分布式节流制冷器性能研究[J]. 化工学报, 2025, 76(8): 4017-4029. |
| [8] | 王涛, 李光明, 胡秋霞, 徐静. 基于时序演变粒子群算法的双色注射产品翘曲工艺优化[J]. 化工学报, 2025, 76(7): 3403-3415. |
| [9] | 米晓天, 刘宏臣, 王克军, 唐文娜, 徐永伟, 杨梅. 微通道内两相吸收剂TETA/DEEA吸收CO2过程的传质研究[J]. 化工学报, 2025, 76(6): 2667-2677. |
| [10] | 郭乃胜, 朱小波, 王双, 陈平, 褚召阳, 王志臣. 聚氨酯改性沥青高低温性能及影响因素的研究进展[J]. 化工学报, 2025, 76(6): 2505-2523. |
| [11] | 刘润健, 林刚, 张玲, 徐栋, 李明, 韩路长. 考虑气泡表面变形影响的靠近-减薄过程耦合模型[J]. 化工学报, 2025, 76(4): 1504-1512. |
| [12] | 吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594. |
| [13] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
| [14] | 侯亚祺, 张玮, 张鸿, 高飞雨, 胡嘉华. 基于机器学习与粒子群算法的LBM多相流模型优化[J]. 化工学报, 2025, 76(3): 1120-1132. |
| [15] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号