• •
收稿日期:2025-06-30
修回日期:2025-07-23
出版日期:2025-07-29
通讯作者:
赵颂
作者简介:陈子汉(2002—),男,硕士研究生,zihan_chen@tju.edu.cn
Zihan CHEN(
), Xiaoyang LIU, Tianxiang YANG, Zhi Wang, SONG Zhao(
)
Received:2025-06-30
Revised:2025-07-23
Online:2025-07-29
Contact:
SONG Zhao
摘要:
面对绿色可持续发展的迫切需求,利用天然生物质为原料制备生物基防腐涂层已成为应对碳中和挑战、革新防腐技术的前沿热点。本文系统综述了生物基防腐涂层材料及其功能化的研究进展,深入阐述其主要的防腐蚀机制。针对当前生物基防腐涂层存在的性能局限,本文探讨了通过纳米复合、缓蚀剂负载、自愈合设计及协同防护机制等策略实现涂层性能提升。此外,本文还概述生物基防腐涂层在海洋工程、工业设备、航空航天等关键领域的应用现状,并指出未来生物基防腐涂层研发亟待突破的关键技术瓶颈,以推动其在更广泛领域的实际应用与产业化进程。
中图分类号:
陈子汉, 刘晓阳, 杨天祥, 王志, 赵颂. 生物基防腐涂层的研究进展[J]. 化工学报, DOI: 10.11949/0438-1157.20250699.
Zihan CHEN, Xiaoyang LIU, Tianxiang YANG, Zhi Wang, SONG Zhao. Research progress on bio based anti-corrosion coating[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250699.
图1(a) 以生物基防腐涂层为主题的期刊论文数量(2015-2024);(b)生物基防腐涂层的分类
Fig.1 (a) The number of journal publications on bio based anti-corrosion coatings from 2015 to 2024; (b) Classification of bio based anti-corrosion coatings
图2 lignin-OH/graphene/WEP涂层的制备过程与防腐机理示意图[11]
Fig.2 Schematic diagram of preparation process and anticorrosion mechanism of lignin-OH/graphene/WEP coating[11]
| 生物酚 | 金属种类 | 引入方式 | 涂层材料 | 浸泡时长/天 | NaCl浓度/ wt% | 腐蚀性能 | 文献 | ||
|---|---|---|---|---|---|---|---|---|---|
腐蚀 电位 Ecorr/V | 腐蚀电流密度Icoor /(×10-9 A·cm-2) | 低频阻抗 |Z|0.01Hz / (×108 Ω·cm2) | |||||||
| 腰果酚 | 钢/Q235 | 固化剂 | FBA-E | 100 | 5 | -0.23 | 0.29 | 12.30 | [ |
| 钢/Q235 | 固化剂 | FBA-B-E | 100 | 5 | 0.70 | 0.014 | 585 | [ | |
| 碳钢/1010 | 固化剂 | CNSL/PFDA | 0 | 3.5 | -0.51 | 1.95 | 2.15 | [ | |
| 低碳钢 | 固化剂 | DCTAni-20 | 0 | 3.5 | -0.22 | 0.017 | 7.20 | [ | |
| 低碳钢 | 固化剂 | NC514-DAPM-PDMS | 1 | 3.5 | -0.48 | 0.27 | 35.10 | [ | |
| 低碳钢 | 固化剂 | MSIL-2 | 21 | 3.5 | -0.23 | 0.89 | 113 | [ | |
| 钢/Q235 | 固化剂 | WE-PB-5 | 45 | 3.5 | 0.0020 | 4.53 | 6.85 | [ | |
| 钢/Q235 | 纳米材料表面接枝 | A-GO/602A | 90 | 3.5 | — | — | 60.80 | [ | |
| 不锈钢 | 硫化改性 | CCES-20 | 3 | 3.5 | -0.25 | — | 8.00 | [ | |
| 丁香酚 | 铜 | 纳米材料表面接枝 | PE/G-1.25 | — | 3.5 | -0.53 | 1.39 | — | [ |
| 低碳钢 | 有机硅改性 | PSEDBA-10 | 30 | 3.5 | — | — | 36.90 | [ | |
厚朴酚 | 马口铁 | 有机硅改性 | E51/HSEE | 6 | 3.5 | — | — | 18.20 | [ |
| 低碳钢 | 环氧树脂 | DGEM-D230 | 7 | 3.5 | — | — | 1.23 | [ | |
| 钢/Q235 | 环氧树脂 | DGEM-D230 | 15 | 3.5 | -0.33 | 3.88 | 1250 | [ | |
香兰素 | 低碳钢 | 固化剂 | MagnTEP-20 | 1 | 3.5 | — | — | 2190 | [ |
| 不锈钢/304 | 固化剂 | AEP-3 | 150 | 3.5 | — | — | 10 | [ | |
| 钢/Q235 | 纳米材料表面接枝 | APGO-3-DE | 70 | 3.5 | -0.25 | 0.0010 | 223 | [ | |
| 钢/Q235 | 缓蚀剂 | MK-VK/EP | 45 | 3.5 | -0.33 | 0.60 | 597 | [ | |
| 低碳钢 | 环氧树脂 | PTEP-OSL/ZnO | — | 3.5 | -0.11 | 0.0050 | 0.56 | [ | |
| 铝合金/AA2024 | 有机硅改性 | DGEVA-GPTMS-TEOS | 68 | 3.5 | — | — | 4.00 | [ | |
| 单宁酸 | 钢/Q235 | 纳米材料表面接枝 | MNs@TA-0.5 | 6.5 | 3.5 | — | 8473 | 0.027 | [ |
| 镁合金/AZ91D | 纳米材料表面接枝 | P-Ce/DMS-TA@CS-EP | 60 | 3.5 | -1.37 | 8.45 | 994 | [ | |
| 钢/Q235 | 缓蚀剂 | TACC | 7 | 3.5 | — | — | 5.44 | [ | |
| 低碳钢 | 缓蚀剂 | ZnT | 28 | 3.5 | -0.70 | — | 1.10 | [ | |
| 低碳钢 | 缓蚀剂 | Ce-TAA | 21 | 3.5 | — | — | >1.00 | [ | |
| 碳钢/DC-01 | 固化剂 | ESO-TA | 368 | 3.5 | — | — | >0.010 | [ | |
表1 生物酚基环氧树脂防腐涂层的防腐性能
Table 1 The anti-corrosion performance of bio phenolic epoxy resin anti-corrosion coating
| 生物酚 | 金属种类 | 引入方式 | 涂层材料 | 浸泡时长/天 | NaCl浓度/ wt% | 腐蚀性能 | 文献 | ||
|---|---|---|---|---|---|---|---|---|---|
腐蚀 电位 Ecorr/V | 腐蚀电流密度Icoor /(×10-9 A·cm-2) | 低频阻抗 |Z|0.01Hz / (×108 Ω·cm2) | |||||||
| 腰果酚 | 钢/Q235 | 固化剂 | FBA-E | 100 | 5 | -0.23 | 0.29 | 12.30 | [ |
| 钢/Q235 | 固化剂 | FBA-B-E | 100 | 5 | 0.70 | 0.014 | 585 | [ | |
| 碳钢/1010 | 固化剂 | CNSL/PFDA | 0 | 3.5 | -0.51 | 1.95 | 2.15 | [ | |
| 低碳钢 | 固化剂 | DCTAni-20 | 0 | 3.5 | -0.22 | 0.017 | 7.20 | [ | |
| 低碳钢 | 固化剂 | NC514-DAPM-PDMS | 1 | 3.5 | -0.48 | 0.27 | 35.10 | [ | |
| 低碳钢 | 固化剂 | MSIL-2 | 21 | 3.5 | -0.23 | 0.89 | 113 | [ | |
| 钢/Q235 | 固化剂 | WE-PB-5 | 45 | 3.5 | 0.0020 | 4.53 | 6.85 | [ | |
| 钢/Q235 | 纳米材料表面接枝 | A-GO/602A | 90 | 3.5 | — | — | 60.80 | [ | |
| 不锈钢 | 硫化改性 | CCES-20 | 3 | 3.5 | -0.25 | — | 8.00 | [ | |
| 丁香酚 | 铜 | 纳米材料表面接枝 | PE/G-1.25 | — | 3.5 | -0.53 | 1.39 | — | [ |
| 低碳钢 | 有机硅改性 | PSEDBA-10 | 30 | 3.5 | — | — | 36.90 | [ | |
厚朴酚 | 马口铁 | 有机硅改性 | E51/HSEE | 6 | 3.5 | — | — | 18.20 | [ |
| 低碳钢 | 环氧树脂 | DGEM-D230 | 7 | 3.5 | — | — | 1.23 | [ | |
| 钢/Q235 | 环氧树脂 | DGEM-D230 | 15 | 3.5 | -0.33 | 3.88 | 1250 | [ | |
香兰素 | 低碳钢 | 固化剂 | MagnTEP-20 | 1 | 3.5 | — | — | 2190 | [ |
| 不锈钢/304 | 固化剂 | AEP-3 | 150 | 3.5 | — | — | 10 | [ | |
| 钢/Q235 | 纳米材料表面接枝 | APGO-3-DE | 70 | 3.5 | -0.25 | 0.0010 | 223 | [ | |
| 钢/Q235 | 缓蚀剂 | MK-VK/EP | 45 | 3.5 | -0.33 | 0.60 | 597 | [ | |
| 低碳钢 | 环氧树脂 | PTEP-OSL/ZnO | — | 3.5 | -0.11 | 0.0050 | 0.56 | [ | |
| 铝合金/AA2024 | 有机硅改性 | DGEVA-GPTMS-TEOS | 68 | 3.5 | — | — | 4.00 | [ | |
| 单宁酸 | 钢/Q235 | 纳米材料表面接枝 | MNs@TA-0.5 | 6.5 | 3.5 | — | 8473 | 0.027 | [ |
| 镁合金/AZ91D | 纳米材料表面接枝 | P-Ce/DMS-TA@CS-EP | 60 | 3.5 | -1.37 | 8.45 | 994 | [ | |
| 钢/Q235 | 缓蚀剂 | TACC | 7 | 3.5 | — | — | 5.44 | [ | |
| 低碳钢 | 缓蚀剂 | ZnT | 28 | 3.5 | -0.70 | — | 1.10 | [ | |
| 低碳钢 | 缓蚀剂 | Ce-TAA | 21 | 3.5 | — | — | >1.00 | [ | |
| 碳钢/DC-01 | 固化剂 | ESO-TA | 368 | 3.5 | — | — | >0.010 | [ | |
图4 (a)MCNFI/UEA复合涂层的制备过程示意图;(b)MCNFI/UEA复合涂层的防腐机理示意图[51]
Fig.4 (a) Preparation process of MCNFI/UEA composite coating; (b) Corrosion prevention mechanism of MCNFI/UEA composite coating[51]
图5 (a)linseed oil@glass/wax胶囊的合成示意图;(b)含微胶囊环氧涂层的自愈与防腐机理示意图[65]
Fig.5 (a) Schematic illustration of the synthesis of linseed oil@glass/wax capsules; (b) Schematic illustration of the self-healing and anticorrosion mechanism of microcapsule-containing epoxy coatings[65]
| 生物质 | 优势 | 局限 | 涂层机械强度 | 涂层防腐性能 | 综合性能 | 文献 |
|---|---|---|---|---|---|---|
| 生物酚 | 抗氧化性强 络合能力强 | 提取成本高 涂层固化温度高 | 中等 | 较强 低频阻抗最高达2.19×1011 Ω·cm2 | 强 | [ |
| 植物油 | 官能团丰富 柔韧性强 | 易发生开环副反应 涂层固化温度高 | 中等 | 较强 低频阻抗最高达2.57×109 Ω·cm2 | 强 | [ |
| 木质素 | 价格低廉 易于化学改性 | 提取效率低 分散性差 | 中等 | 较强 低频阻抗>108 Ω·cm2 | 中等 | [ |
| 纳米纤维素 | 机械性能优异 界面相容性好 | 亲水性过强 分散性差 | 高 | 中等 低频阻抗<108 Ω·cm2 | 中等 | [ |
| 壳聚糖 | 生物相容性好 抗菌与自愈性强 | 溶解度低 柔韧性差 | 低 | 较差 低频阻抗<106 Ω·cm2 | 弱 | [ |
表2 生物基环氧涂层性能的对比分析
Table 2 Comparative analysis of the performance of bio based epoxy coatings
| 生物质 | 优势 | 局限 | 涂层机械强度 | 涂层防腐性能 | 综合性能 | 文献 |
|---|---|---|---|---|---|---|
| 生物酚 | 抗氧化性强 络合能力强 | 提取成本高 涂层固化温度高 | 中等 | 较强 低频阻抗最高达2.19×1011 Ω·cm2 | 强 | [ |
| 植物油 | 官能团丰富 柔韧性强 | 易发生开环副反应 涂层固化温度高 | 中等 | 较强 低频阻抗最高达2.57×109 Ω·cm2 | 强 | [ |
| 木质素 | 价格低廉 易于化学改性 | 提取效率低 分散性差 | 中等 | 较强 低频阻抗>108 Ω·cm2 | 中等 | [ |
| 纳米纤维素 | 机械性能优异 界面相容性好 | 亲水性过强 分散性差 | 高 | 中等 低频阻抗<108 Ω·cm2 | 中等 | [ |
| 壳聚糖 | 生物相容性好 抗菌与自愈性强 | 溶解度低 柔韧性差 | 低 | 较差 低频阻抗<106 Ω·cm2 | 弱 | [ |
| 生物基材料 | 纳米填料种类 | 涂层材料 | 浸泡时长/天 | NaCl 浓度/wt% | 腐蚀性能 | 文献 | ||
|---|---|---|---|---|---|---|---|---|
腐蚀 电位 Ecorr/V | 腐蚀电流密度 Icoor/ (×10-9 A·cm-2) | 低频阻抗 |Z|0.01Hz/(×108 Ω·cm2) | ||||||
| 聚乳酸 | 有机硅改性滑石粉 | 5Talc-POTs/80A20B | 90 | 3.5 | — | — | >1000 | [ |
| 麻风树油 | ZnO | AEJO/ZnO | 33 | 3.5 | 0.14 | 1.29 | 0.20 | [ |
| 麻风树油 | 石墨烯 | AEJO-GNP | 30 | 3.5 | 0.010 | 1.53 | 0.34 | [ |
| 腰果酚/没食子酸 | 六方氮化硼 | PC-S/GA/BN | 30 | 3.5 | — | — | 323 | [ |
| 蓖麻油 | SiO2 | OXY-MSNP-ECO | 15 | 3.5 | -0.028 | 7.40 | 0.018 | [ |
| 蓖麻油 | 钼负载沸石 | MoS5-COPU | 15 | 3.5 | -0.11 | 0.50 | 0.13 | [ |
| 氧化杜仲胶 | 8-羟基喹啉改性沸石 | EL/8HQ@ZIF-8/fZ | 15 | 3.5 | — | — | 0.21 | [ |
| 聚乳酸 | 石榴石 | Epoxy/PLA/Garnet | 28 | 3.5 | 0.033 | 0.018 | 27 | [ |
| 腰果酚 | UPy改性氧化石墨烯 | I-G-NEU0.2 | 45 | 3.5 | — | — | 22.10 | [ |
| 壳聚糖 | Ti3C2Tx | Ti3C2Tx MXene-SnCl2 | 7 | — | — | 2.28 | 16.52 | [ |
| 环氧大豆油 | 单宁酸-石墨烯 | TH-rGO | 56 | 3.5 | — | — | 44.20 | [ |
| 纤维素 | 纳米纤维素-石墨烯-ZnO | TPCRZ | 15 | 3.5 | -0.51 | 33.10 | ≈0.10 | [ |
表3 生物基纳米复合涂层的防腐性能
Table3 Anti-corrosion properties of bio-nanocomposite coatings
| 生物基材料 | 纳米填料种类 | 涂层材料 | 浸泡时长/天 | NaCl 浓度/wt% | 腐蚀性能 | 文献 | ||
|---|---|---|---|---|---|---|---|---|
腐蚀 电位 Ecorr/V | 腐蚀电流密度 Icoor/ (×10-9 A·cm-2) | 低频阻抗 |Z|0.01Hz/(×108 Ω·cm2) | ||||||
| 聚乳酸 | 有机硅改性滑石粉 | 5Talc-POTs/80A20B | 90 | 3.5 | — | — | >1000 | [ |
| 麻风树油 | ZnO | AEJO/ZnO | 33 | 3.5 | 0.14 | 1.29 | 0.20 | [ |
| 麻风树油 | 石墨烯 | AEJO-GNP | 30 | 3.5 | 0.010 | 1.53 | 0.34 | [ |
| 腰果酚/没食子酸 | 六方氮化硼 | PC-S/GA/BN | 30 | 3.5 | — | — | 323 | [ |
| 蓖麻油 | SiO2 | OXY-MSNP-ECO | 15 | 3.5 | -0.028 | 7.40 | 0.018 | [ |
| 蓖麻油 | 钼负载沸石 | MoS5-COPU | 15 | 3.5 | -0.11 | 0.50 | 0.13 | [ |
| 氧化杜仲胶 | 8-羟基喹啉改性沸石 | EL/8HQ@ZIF-8/fZ | 15 | 3.5 | — | — | 0.21 | [ |
| 聚乳酸 | 石榴石 | Epoxy/PLA/Garnet | 28 | 3.5 | 0.033 | 0.018 | 27 | [ |
| 腰果酚 | UPy改性氧化石墨烯 | I-G-NEU0.2 | 45 | 3.5 | — | — | 22.10 | [ |
| 壳聚糖 | Ti3C2Tx | Ti3C2Tx MXene-SnCl2 | 7 | — | — | 2.28 | 16.52 | [ |
| 环氧大豆油 | 单宁酸-石墨烯 | TH-rGO | 56 | 3.5 | — | — | 44.20 | [ |
| 纤维素 | 纳米纤维素-石墨烯-ZnO | TPCRZ | 15 | 3.5 | -0.51 | 33.10 | ≈0.10 | [ |
图6 自修复仿生纳米复合涂层的制备过程意图:(a)GO和生物基环氧树脂的预处理和混合路线;(b)纳米材料悬浮体系;(c)珍珠层纳米复合材料;(d)生物基聚合物网络和UPy结构图;(e)珍珠层结构和超分子氢键结合的原理[95]
Fig.6 Preparation process intention of self-repairing bionic nano-composite coating:(a) pretreatment and mixing routes of GO and bio based epoxy resin; (b) Nanomaterial suspension system; (c) Pearly nanocomposites; (d) Structural diagrams of the bio based polymer network and Upy; (e) The structure of the artificial pearl layer and the principle of supramolecular hydrogen bonding[95]
图8 (a)IS涂层的界面强化单元结构;(b)IS涂层的SEM微观形貌及复合结构示意图[104]
Fig.8 (a) Interface strengthening unit structure of IS coating; (b) SEM microscopic morphology and composite structure of the IS coating[104]
| [29] | Sun S Y. Design and performance study of epoxy resin system with high solid content and low viscosity[D]. Wuxi: Jiangnan University, 2022. |
| [30] | 孙尚艳, 杨苏, 钱佳怡, 等. 有机硅改性丁香酚基环氧稀释剂的合成及性能研究[J]. 涂料工业, 2022, 52(2): 26-32, 41. |
| Sun S Y, Yang S, Qian J Y, et al. Synthesis and properties of silicone modified eugenol-based epoxy diluent[J]. Paint & Coatings Industry, 2022, 52(2): 26-32, 41. | |
| [31] | 赵婧, 顾程文, 蹇锡高, 等. 厚朴酚基环氧树脂防腐涂层的制备及性能评价[J]. 化工学报, 2023, 74(7): 3010-3017. |
| Zhao J, Gu C W, Jian X G, et al. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings[J]. CIESC Journal, 2023, 74(7): 3010-3017. | |
| [32] | 李柱, 黄橹, 韩飞, 等. 厚朴酚环氧树脂涂层的制备及综合防护性能研究[J]. 材料保护, 2024, 57(3): 70-79, 97. |
| Li Z, Huang L, Han F, et al. Preparation and comprehensive protective performance study of thickened magnolol epoxy resin coatings[J]. Materials Protection, 2024, 57(3): 70-79, 97. | |
| [33] | 王智勐. 生物基改性耐温耐压防腐涂层的制备及其性能研究[D]. 青岛: 青岛科技大学, 2024. |
| Wang Z M. Preparation and properties of bio-based modified temperature-resistant, pressure-resistant and corrosion-resistant coatings[D]. Qingdao: Qingdao University of Science & Technology, 2024. | |
| [34] | Xu C A, Liang W Z, Yang S H, et al. Preparation of a vanillin-based active ester curing agent and the low dielectric, antibacterial, and anticorrosion properties of its coatings[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(42): 15740-15751. |
| [35] | Xu C G, Chu Z Z, Li X C, et al. Vanillin and organosilicon functionalized graphene oxide modified ester resin composite coatings with excellent anti-corrosion properties[J]. Progress in Organic Coatings, 2023, 183: 107804. |
| [36] | Zhang Z H, Cao Y Y, Wan J R, et al. Double-layered composite coating with enhanced self-healing and anti-corrosion performance based on synergistic effect of l-methionine and vanillin[J]. Progress in Organic Coatings, 2024, 192: 108477. |
| [37] | Wei D Q, Liang S, Lv S H, et al. Preparation and properties of modified lignin/triphenol epoxy composite coatings for superhydrophobicity and corrosion protection[J]. ACS Applied Polymer Materials, 2024, 6(9): 5485-5495. |
| [38] | Trentin A, Merino E C, Samiee R, et al. Bio-based vanillin alcohol diglycidyl ether (DGEVA)-silica coatings for corrosion protection of AA2024[J]. Materials Letters, 2024, 370: 136774. |
| [39] | Ye Z Q, Tang Z X, Meng G Z, et al. Mussel-inspired preparation of dispersible mica nanosheets for waterborne epoxy coatings with reinforced anticorrosive performance[J]. Progress in Organic Coatings, 2023, 175: 107379. |
| [40] | Wan J R, Cao Y Y, Li Y Q, et al. Robust pH-responsive double-layered self-healing coating with synergistic effects of tannic acid and Ce ions applied on Mg alloy via the phytic acid pretreatment[J]. Progress in Organic Coatings, 2025, 203: 109152. |
| [41] | Xiong C S, Wang Z R, Jin Z Q, et al. Preparation of tannic acid-based conversion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solution[J]. Case Studies in Construction Materials, 2024, 21: e03983. |
| [42] | Zmozinski A V, Peres R S, Freiberger K, et al. Zinc tannate and magnesium tannate as anticorrosion pigments in epoxy paint formulations[J]. Progress in Organic Coatings, 2018, 121: 23-29. |
| [43] | Moghaddam P N, Amini R, Kardar P, et al. Epoxy-ester coating reinforced with cerium (III)-tannic acid-based hybrid pigment for effective mild-steel substrate corrosion protection[J]. Progress in Organic Coatings, 2021, 161: 106485. |
| [44] | Teijido R, Monteserin C, Blanco M, et al. Exploring anti-corrosion properties and rheological behaviour of tannic acid and epoxidized soybean oil-based fully bio-based epoxy thermoset resins[J]. Progress in Organic Coatings, 2024, 196: 108719. |
| [45] | Jaramillo A F, Montoya L F, Prabhakar J M, et al. Formulation of a multifunctional coating based on polyphenols extracted from the Pine radiata bark and functionalized zinc oxide nanoparticles: Evaluation of hydrophobic and anticorrosive properties[J]. Progress in Organic Coatings, 2019, 135: 191-204. |
| [46] | Zhang H, Wang B B, Han J P, et al. A self-healing coating with embedding of polyphenols on magnesium: Towards enhanced corrosion protection for biodegradable vascular implants[J]. Chemical Engineering Journal, 2024, 482: 149020. |
| [47] | Yang X P, Biswas S K, Han J Q, et al. Surface and interface engineering for nanocellulosic advanced materials[J]. Advanced Materials, 2021, 33(28): 2002264. |
| [48] | 周柯鑫, 张晨曦, 吴柔芬, 等. 植物纳米纤维素材料制备的研究进展[J]. 中国科学: 化学, 2025, 55(1): 242-257. |
| [1] | 杨涛, 许磊, 王建春, 等. 油套管CO2腐蚀和防护研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1134-1144. |
| Yang T, Xu L, Wang J C, et al. Research progress on CO2 corrosion and protective countermeasures for oil casing[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(5): 1134-1144. | |
| [2] | 郑雅昕, 范炳成, 刘毅. 钢基体表面磷酸钾镁水泥基防腐涂层的研究进展[J]. 材料保护, 2025, 58(4): 17-29. |
| Zheng Y X, Fan B C, Liu Y. Research progress of magnesium potassium phosphate cement-based anti-corrosive coating on steel substrate[J]. Materials Protection, 2025, 58(4): 17-29. | |
| [3] | Yin L J, Zhang B, Tian M, et al. Synthesis and applications of bio-based waterborne polyurethane, a review[J]. Progress in Organic Coatings, 2024, 186: 108095. |
| [4] | Babu R P, O'Connor K, Seeram R. Current progress on bio-based polymers and their future trends[J]. Progress in Biomaterials, 2013, 2(1): 8. |
| [5] | Mhd Haniffa M A C, Ching Y C, Abdullah L C, et al. Review of bionanocomposite coating films and their applications[J]. Polymers, 2016, 8(7): 246. |
| [6] | Zhou X, Fu F, Shen M G, et al. Research progress of bio-based polybenzoxazine materials[J]. Advanced Sustainable Systems, 2024, 8(2): 2300372. |
| [7] | 陈吉托. 本征阻燃生物基环氧树脂的制备及性能研究[D]. 杭州: 浙江农林大学, 2023. |
| Chen J T. Preparation and properties of intrinsically flame retardant bio-based epoxy resin[D]. Hangzhou: Zhejiang A & F University, 2023. | |
| [8] | Yu O, Kim K H. Lignin to materials: a focused review on recent novel lignin applications[J]. Applied Sciences, 2020, 10(13): 4626. |
| [9] | Dessbesell L, Paleologou M, Leitch M, et al. Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109768. |
| [48] | Zhou K X, Zhang C X, Wu R F, et al. Research progress on the preparation of plant-based nanocellulose[J]. Scientia Sinica Chimica, 2025, 55(1): 242-257. |
| [49] | Wang Z P, O'Young L, Li M K, et al. Application of nanocellulose in anticorrosion coatings: a review of recent advances[J]. International Journal of Biological Macromolecules, 2025, 315: 144371. |
| [50] | Binyaseen A M, Bayazeed A, Al-nami S Y, et al. Development of epoxy/rice straw-based cellulose nanowhiskers composite smart coating immobilized with rare-earth doped aluminate: Photoluminescence and anticorrosion properties for sustainability[J]. Ceramics International, 2022, 48(4): 4841-4850. |
| [51] | Wu H T, Han X T, Zhao W, et al. Mechanical and electrochemical properties of UV-curable nanocellulose/urushiol epoxy acrylate anti-corrosive composite coatings[J]. Industrial Crops and Products, 2022, 181: 114805. |
| [52] | Wang L Y, Hui L F, Su W Y. Superhydrophobic modification of nanocellulose based on an octadecylamine/dopamine system[J]. Carbohydrate Polymers, 2022, 275: 118710. |
| [53] | Shahnavaz A, Shojaei A, Rahmani P, et al. Active corrosion protection of epoxy coating filled with surface-engineered cellulose nanocrystals with polyaniline[J]. International Journal of Biological Macromolecules, 2025, 302: 140494. |
| [54] | Miri T, Seifzadeh D, Rajabalizadeh Z. Smart epoxy coating containing inhibitor-loaded cellulose nanocrystals for corrosion protection of steel[J]. Surface and Coatings Technology, 2024, 477: 130241. |
| [55] | Ji X H, Ji W H, Pourhashem S, et al. Novel superhydrophobic core-shell fibers/epoxy coatings with self-healing anti-corrosion properties in both acidic and alkaline environments[J]. Reactive and Functional Polymers, 2023, 187: 105574. |
| [56] | Lv Y, Li Q, Yang W D, et al. Recent advances in functional design of nanocellulose and their intelligent application[J]. International Journal of Smart and Nano Materials, 2025, 16(2): 245-283. |
| [57] | 于帅, 马建中, 吕斌. 植物油基聚合物的研究进展[J]. 应用化工, 2019, 48(5): 1197-1201, 1207. |
| Yu S, Ma J Z, Lü B. Research progress of vegetable oil-based polymers[J]. Applied Chemical Industry, 2019, 48(5): 1197-1201, 1207. | |
| [58] | Li X, Wang D, Zhao L Y, et al. UV LED curable epoxy soybean-oil-based waterborne PUA resin for wood coatings[J]. Progress in Organic Coatings, 2021, 151: 105942. |
| [10] | Rath S, Pradhan D, Du H S, et al. Transforming lignin into value-added products: perspectives on lignin chemistry, lignin-based biocomposites, and pathways for augmenting ligninolytic enzyme production[J]. Advanced Composites and Hybrid Materials, 2024, 7(1): 27. |
| [11] | Wang S, Hu Z R, Shi J, et al. Green synthesis of graphene with the assistance of modified lignin and its application in anticorrosive waterborne epoxy coatings[J]. Applied Surface Science, 2019, 484: 759-770. |
| [12] | Diógenes O B F, de Oliveira D R, da Silva L R R, et al. Development of coal tar-free coatings: acetylated lignin as a bio-additive for anticorrosive and UV-blocking epoxy resins[J]. Progress in Organic Coatings, 2021, 161: 106533. |
| [13] | Diógenes O B F, de Oliveira D R, da Silva L R R, et al. Acetylated lignin as a biocomponent for epoxy coating: Anticorrosive performance analysis by accelerated corrosion tests[J]. Surface and Coatings Technology, 2023, 474: 130116. |
| [14] | Wang X, Leng W Q, Oshani Nayanathara R M, et al. Anticorrosive epoxy coatings from direct epoxidation of bioethanol fractionated lignin[J]. International Journal of Biological Macromolecules, 2022, 221: 268-277. |
| [15] | 李伟娜, 辛毅. 木质素微纳米胶囊的应用研究进展[J]. 现代化工, 2023, 43(3): 46-50. |
| Li W N, Xin Y. Research progress on application of lignin micro-nano capsules[J]. Modern Chemical Industry, 2023, 43(3): 46-50. | |
| [16] | Lai X, Hu J F, Qu J Q. A mussel-inspired lignin micro-nanospheres/epoxy composite coating with superhydrophobicity, ultraviolet resistance, and photothermal conversion performance for excellent corrosion control[J]. Progress in Organic Coatings, 2025, 200: 109049. |
| [17] | Shen X J, Zhao Z T, Wen J L, et al. Standardization transformation of C-lignin to catechol and propylene[J]. Nature Communications, 2025, 16(1): 6245. |
| [18] | Wan J T, Zhao J Q, Zhang X W, et al. Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances[J]. Progress in Polymer Science, 2020, 108: 101287. |
| [19] | Wu C H, Wang J X, Yang F R, et al. Full bio-based phenalkamine prepared by one-pot process used for preparing solvent-free protective coating[J]. Progress in Organic Coatings, 2024, 188: 108257. |
| [20] | 吴昌豪. 生物基呋喃聚合物涂层的制备及其防腐和热修复性能研究[D]. 天津: 天津大学, 2024. |
| [59] | Altuna F I, Antonacci J, Arenas G F, et al. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks[J]. Materials Research Express, 2016, 3(4): 045003. |
| [60] | 何吉喆, 刘明言, 徐杨书函. 环氧豆油树脂涂层的防腐性能研究[J]. 化工学报, 2021, 72(2): 1067-1077. |
| He J Z, Liu M Y, Xu Y. Study on anticorrosive properties of epoxy soybean oil resin coating[J]. CIESC Journal, 2021, 72(2): 1067-1077. | |
| [61] | Singh P, Rana A, Karak N, et al. Sustainable smart anti-corrosion coating materials derived from vegetable oil derivatives: a review[J]. RSC Advances, 2023, 13(6): 3910-3941. |
| [62] | Parvathy P A, Sahoo S. Hydrophobic, moisture resistant and biorenewable paper coating derived from castor oil based epoxy methyl ricinoleate with repulpable potential[J]. Progress in Organic Coatings, 2021, 158: 106347. |
| [63] | Hegde M B, Mohana K N S, Rajitha K, et al. Reduced graphene oxide-epoxidized linseed oil nanocomposite: a highly efficient bio-based anti-corrosion coating material for mild steel[J]. Progress in Organic Coatings, 2021, 159: 106399. |
| [64] | Kurt Çömlekçi G, Ulutan S. Acquired self-healing ability of an epoxy coating through microcapsules having linseed oil and its alkyd[J]. Progress in Organic Coatings, 2019, 129: 292-299. |
| [65] | Li Z K, Li K K, Li X, et al. Preparation of linseed oil-loaded porous glass bubble/wax microcapsules for corrosion- and wear-resistant difunctional coatings[J]. Chemical Engineering Journal, 2022, 437: 135403. |
| [66] | Yu D K, Li Z, Li C X, et al. Chemical linkage in bifunctional chitosan-mercaptobenzothiazole (MBT) coatings for enhanced corrosion prevention and antifouling activities[J]. Sustainable Materials and Technologies, 2025, 44: e01371. |
| [67] | Szőke Á F, Szabó G, Simó Z, et al. Chitosan coatings ionically cross-linked with ammonium paratungstate as anticorrosive coatings for zinc[J]. European Polymer Journal, 2019, 118: 205-212. |
| [68] | Binder L, de Sousa Santos F, Ferreira da Conceição T. The influence of molecular weight on the anticorrosion properties of chitosan coatings[J]. International Journal of Biological Macromolecules, 2024, 278: 134912. |
| [69] | Esmailzadeh M, Tammari E, Safarpour T, et al. Anti-corrosion effect of chitin and chitosan nanoparticles in epoxy coatings[J]. Materials Chemistry and Physics, 2024, 317: 129097. |
| [20] | Wu C H. Preparation of bio-based furfuryl polymer coatings and their application in anticorrosion and thermal healing[D]. Tianjin: Tianjin University, 2024. |
| [21] | da Silva L R R, Avelino F, Diogenes O B F, et al. Development of BPA-free anticorrosive epoxy coatings from agroindustrial waste[J]. Progress in Organic Coatings, 2020, 139: 105449. |
| [22] | Ermiya Prasad P, Dhore N, Palanisamy A, et al. Anti-corrosion studies on cardanol epoxy coatings cured with redox-active aromatic trimer and tetramer oligoanilines[J]. Progress in Organic Coatings, 2024, 197: 108802. |
| [23] | Bellido-Aguilar D A, Zheng S L, Huang Y J, et al. Solvent-free synthesis and hydrophobization of biobased epoxy coatings for anti-icing and anticorrosion applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19131-19141. |
| [24] | Wazarkar K, Kathalewar M, Sabnis A. Anticorrosive and insulating properties of cardanol based anhydride curing agent for epoxy coatings[J]. Reactive and Functional Polymers, 2018, 122: 148-157. |
| [25] | 李陈成. 生物质基水性环氧固化剂及其防腐蚀涂层的制备与性能研究[D]. 广州: 华南理工大学, 2022. |
| Li C C. Preparation and properties of biomass-based waterborne epoxy curing agent and its anticorrosive coating[D]. Guangzhou: South China University of Technology, 2022. | |
| [26] | Zhang Y Y, Chu L Y, Dai Z S, et al. Synergistically enhancing the performance of cardanol-rich epoxy anticorrosive coatings using cardanol-based reactive diluent and its functionalized graphene oxide[J]. Progress in Organic Coatings, 2022, 171: 107060. |
| [27] | Lv J, Liu Z Y, Zhang J, et al. Bio-based episulfide composed of cardanol/cardol for anti-corrosion coating applications[J]. Polymer, 2017, 121: 286-296. |
| [28] | Prasetya N B A, Ajizan A I, Widodo D S, et al. A polyeugenol/graphene composite with excellent anti-corrosion coating properties[J]. Materials Advances, 2023, 4(1): 248-255. |
| [29] | 孙尚艳. 高固体分低黏度环氧树脂体系的设计及性能研究[D]. 无锡: 江南大学, 2022. |
| [70] | El-Shamy O A A, Deyab M A. Novel anticorrosive coatings based on nanocomposites of epoxy, chitosan, and silver[J]. Materials Letters, 2023, 330: 133298. |
| [71] | 李丹丹, 谈继淮, 胡丁根, 等. 水性聚氨酯表面施胶剂的制备、改性及应用研究进展[J]. 化工进展, 2021, 40(1): 366-377. |
| Li D D, Tan J H, Hu D G, et al. Recent development of waterborne polyurethane as surface sizing agent: preparation, modification and application[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 366-377. | |
| [72] | 李欣燕, 张雪莲, 王光皓, 等. 生物基聚氨酯材料的研究进展[J]. 河南化工, 2024, 41(3): 20-22. |
| Li X Y, Zhang X L, Wang G H, et al. Research progress of bio-based polyurethane materials[J]. Henan Chemical Industry, 2024, 41(3): 20-22. | |
| [73] | Zhou M Y, Ha Z M, Lei L, et al. Castor oil-based transparent and omniphobic polyurethane coatings with high hardness, anti-smudge and anti-corrosive properties[J]. Progress in Organic Coatings, 2022, 172: 107120. |
| [74] | Paraskar P M, Prabhudesai M S, Kulkarni R D. Synthesis and characterizations of air-cured polyurethane coatings from vegetable oils and itaconic acid[J]. Reactive and Functional Polymers, 2020, 156: 104734. |
| [75] | Cao Y D, Liu Z Z, Zheng B X, et al. Synthesis of lignin-based polyols via thiol-ene chemistry for high-performance polyurethane anticorrosive coating[J]. Composites Part B: Engineering, 2020, 200: 108295. |
| [76] | 何柳. 生物基聚氨酯涂层的制备与性能研究[D]. 无锡: 江南大学, 2024. |
| He L. Preparation and properties of bio-based polyurethane coatings[D]. Wuxi: Jiangnan University, 2024. | |
| [77] | 陈斌. 天冬聚脲弹性体的制备及其结构与性能关系的研究[D]. 大连: 大连理工大学, 2024. |
| Chen B. Preparation of asparagus polyurea elastomer and study on the relationship between structure and properties[D]. Dalian: Dalian University of Technology, 2024. | |
| [78] | Wang C, Chen J X, Han J, et al. Enhanced corrosion inhibition performance of novel modified polyaspartic acid on carbon steel in HCl solution[J]. Journal of Alloys and Compounds, 2019, 771: 736-746. |
| [79] | Wang Z X, Du M R, Fang H Y, et al. The development of high-strength, anticorrosive, and strongly adhesive polyaspartate polyurea coating suitable for pipeline spray repairs[J]. Journal of Applied Polymer Science, 2024, 141(29): e55668. |
| [80] | Jahan A, Masood S, Zafar F, et al. Ambient-cured cardanol-derived polyurea coatings for anti-corrosive and anti-bacterial applications[J]. Progress in Organic Coatings, 2023, 182: 107638. |
| [81] | 甘小利. 聚天门冬氨酸酯聚脲和水性聚脲涂层材料的制备与改性[D]. 长沙: 湖南大学, 2022. |
| Gan X L. Preparation and modification of polyaspartic polyurea and waterborne polyurea coating materials[D]. Changsha: Hunan University, 2022. | |
| [82] | Wang C F, Dr Y S, Dr S K, et al. Low-surface-free-energy materials based on polybenzoxazines[J]. Angewandte Chemie International Edition, 2006, 45(14): 2248-2251. |
| [83] | Lyu Y, Ishida H. Natural-sourced benzoxazine resins, homopolymers, blends and composites: a review of their synthesis, manufacturing and applications[J]. Progress in Polymer Science, 2019, 99: 101168. |
| [84] | Wang L T, Yuan M L, Zhao Y D, et al. Fabrication of superhydrophobic bio-based polybenzoxazine/hexagonal boron nitride composite coating for corrosion protection[J]. Progress in Organic Coatings, 2022, 167: 106863. |
| [85] | Oliveira J R, Kotzebue L R V, Ribeiro F W M, et al. Microwave-assisted solvent-free synthesis of novel benzoxazines: a faster and environmentally friendly route to the development of bio-based thermosetting resins[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(21): 3534-3544. |
| [86] | 李晓丹, 胡心雨, 刘小平, 等. 苯并噁嗪树脂的研究新进展: 智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218. |
| Li X D, Hu X Y, Liu X P, et al. A review on the new development of benzoxazine resin: use in smart materials and energy and environmental applications[J]. Materials Reports, 2021, 35(3): 3209-3218. | |
| [87] | 李厚为. 羧甲基壳聚糖/纳米粒子改性环氧丙烯酸酯乳液及其水性防腐涂料的研制[D]. 青岛: 青岛科技大学, 2024. |
| Li H W. Preparation of carboxymethyl chitosan/nanoparticles modified epoxy acrylate emulsion and its waterborne anticorrosive coating[D]. Qingdao: Qingdao University of Science & Technology, 2024. | |
| [88] | Hu H D, Bai Z H, Sun Y, et al. Solvent-free preparation of bio-based composite coating with improved crystallinity and unique corrosion resistance[J]. Progress in Organic Coatings, 2023, 179: 107520. |
| [89] | Aung M M, Li W J, Lim H N. Improvement of anticorrosion coating properties in bio-based polymer epoxy acrylate incorporated with nano zinc oxide particles[J]. Industrial & Engineering Chemistry Research, 2020, 59(5): 1753-1763. |
| [90] | Li W J, Aung M M, Rayung M, et al. Bio-based acrylated epoxidized jatropha oil incorporated with graphene nanoplatelets in the assessment of corrosion resistance coating[J]. Progress in Organic Coatings, 2023, 175: 107349. |
| [91] | P R R, Ulaeto S B, Raj V A, et al. Development of an oxyresveratrol incorporated bio-based smart nanocomposite coating with anti-corrosive, self-healing, and anti-microbial properties[J]. Green Chemistry, 2023, 25(18): 7189-7215. |
| [92] | Kashyap S S, Borah K, Shailesh Kumar J S, et al. Role of silicoaluminophosphate as a corrosion inhibiting nanocontainer and filler in environmentally benign bio-based hybrid coatings[J]. ACS Sustainable Resource Management, 2024, 1(6): 1211-1224. |
| [93] | Yue P P, Zhang M, Zhao T, et al. Eco-friendly epoxidized Eucommia ulmoides gum based composite coating with enhanced super-hydrophobicity and corrosion resistance properties[J]. Industrial Crops and Products, 2024, 214: 118523. |
| [94] | Rajiv G, Jeswin Anto L, Mathumitha K, et al. Synergistic effects of biobased PLA and Garnet waste towards enhanced corrosion resistance of epoxy coating[J]. Journal of Molecular Structure, 2025, 1341: 142591. |
| [95] | Wu H, Li J W, Zhang W Y, et al. Supramolecular engineering of nacre-inspired bio-based nanocomposite coatings with exceptional ductility and high-efficient self-repair ability[J]. Chemical Engineering Journal, 2022, 437: 135405. |
| [96] | Wang T G, Ma X Q, Gong B L, et al. Relocation of surface potential induced stable corrosion resistance of thin MXene/chitosan composite coating on Al alloy bipolar plates in PEMFC environments[J]. Corrosion Science, 2025, 249: 112854. |
| [97] | Liu Z Q, Shu B, Liu Z L, et al. Mussel-inspired synergistic anticorrosive coatings for steel substrate prepared basing on fully bio-based epoxy resin and biomass modified graphene nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 693: 134038. |
| [98] | Dutta G K, Karak N. Bio-based waterborne polyester/cellulose nanofiber-reduced graphene oxide–zinc oxide nanocomposite: an approach towards sustainable mechanically robust anticorrosive coating[J]. Cellulose, 2022, 29(3): 1679-1703. |
| [99] | 彭正康. 功能聚氨酯纳米涂层的构建[D]. 扬州: 扬州大学, 2024. |
| Peng Z K. Construction of functional polyurethane nano-coating[D]. Yangzhou: Yangzhou University, 2024. | |
| [100] | 汪怀远, 林丹, 张曦光, 等. 水性超疏水涂层的制备、调控与应用的研究进展[J]. 化工学报, 2021, 72(2): 669-680. |
| Wang H Y, Lin D, Zhang X G, et al. Research progress on preparation, regulation and application of waterborne superhydrophobic coatings[J]. CIESC Journal, 2021, 72(2): 669-680. | |
| [101] | Xie J Z, Yang Y C, Gao B, et al. Biomimetic superhydrophobic biobased polyurethane-coated fertilizer with atmosphere "outerwear"[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15868-15879. |
| [102] | Wang L, Guo Z W, Guo D L, et al. Constructing industrial lignin into robust and multifunctional superhydrophobic coating for effective anti-icing[J]. International Journal of Biological Macromolecules, 2025, 289: 138891. |
| [103] | Yu J N, Shang Q Q, Zhang M, et al. Bio-based superhydrophobic coatings from cashew nut for self-cleaning and long-term anticorrosion applications[J]. Progress in Organic Coatings, 2024, 195: 108661. |
| [104] | Xia Y G, Gu W C, Zhang Q, et al. Enhancing resistance to corrosion and fouling using epoxy coatings with superhydrophobic cells[J]. Advanced Functional Materials, 2025, 35(2): 2412379. |
| [105] | 康瑞瑞, 方大庆, 陈财洋, 等. 智能涂层概述及其研究进展[J]. 涂料工业, 2024, 54(1): 66-73. |
| Kang R R, Fang D Q, Chen C Y, et al. Overview and research progress of smart coating[J]. Paint & Coatings Industry, 2024, 54(1): 66-73. | |
| [106] | Liu J G, Huang W R, Zhang K L, et al. Early warning and self-repair properties of o-phenanthroline modified graphene oxide anti-corrosion coating[J]. Progress in Organic Coatings, 2024, 189: 108274. |
| [107] | 胡云飞. 荧光自预警环氧涂层的设计及其防护性能研究[D]. 武汉: 华中科技大学, 2023. |
| Hu Y F. Design of fluorescent self-warning epoxy coating and its protective performance[D]. Wuhan: Huazhong University of Science and Technology, 2023. | |
| [108] | Chen T, Li Y S, Zhang W Y, et al. Sustainable photothermal-responsive anti-corrosion nanocomposite coating with distinguished self-healing performance and ultrahigh mechanical properties[J]. Progress in Organic Coatings, 2025, 200: 109070. |
| [109] | Leal D A, Riegel-Vidotti I C, Ferreira M G S, et al. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection[J]. Corrosion Science, 2018, 130: 56-63. |
| [110] | Yan L, Deng W J, Wang N, et al. Anti-corrosion reinforcements using coating technologies-a review[J]. Polymers, 2022, 14(21): 4782. |
| [111] | Liang Y, Zhang D, Zhou M Y, et al. Bio-based omniphobic polyurethane coating providing anti-smudge and anti-corrosion protection[J]. Progress in Organic Coatings, 2020, 148: 105844. |
| [112] | Chen T, Wu H, Zhang W Y, et al. A sustainable body-temperature self-healing polyurethane nanocomposite coating with excellent strength and toughness through optimal hydrogen-bonding interactions[J]. Progress in Organic Coatings, 2023, 185: 107876. |
| [113] | Zhang R Y, Yu X, Yang Q W, et al. The role of graphene in anti-corrosion coatings: a review[J]. Construction and Building Materials, 2021, 294: 123613. |
| [114] | Fang Y, Chen Z, Chi C Y, et al. Anisotropic dispersion promoting and passivation protecting of CA@JNs@Zn2+ Janus nanosheets on epoxy anticorrosive coatings[J]. Progress in Organic Coatings, 2023, 185: 107913. |
| [115] | 王朴炎, 俞嘉辉, 臧显峰, 等. 深海环境下环氧重防腐涂层的防护机理和应用研究进展[J]. 中国表面工程, 2024, 37(6): 135-145. |
| Wang P Y, Yu J H, Zang X F, et al. Research progress on the protection mechanism and application of epoxy heavy-duty anti-corrosion coatings in deep-sea environments[J]. China Surface Engineering, 2024, 37(6): 135-145. | |
| [116] | Wang Q H, Wang R Z, Zhang Q, et al. Application of biomass corrosion inhibitors in metal corrosion control: a review[J]. Molecules, 2023, 28(6): 2832. |
| [117] | Park D, Shin S, Sherrell P C, et al. Improving energy storage and nickel manganese cobalt oxide cathode lifetime via a tannic acid/iron (III) metal phenolic network coating[J]. Advanced Functional Materials, 2025, 35(12): 2417549. |
| [118] | Gao X, Lv Y J, Ma H F, et al. Novel high-performance and long-life anti-corrosion coating with rust conversion and self-healing characteristics based on waste biomass derived carbon nanosheets[J]. Progress in Organic Coatings, 2022, 166: 106820. |
| [119] | Sun J W, Duan J Z, Liu X J, et al. Environmentally benign smart self-healing silicone-based coating with dual antifouling and anti-corrosion properties[J]. Applied Materials Today, 2022, 28: 101551. |
| [120] | 曹新伟. 基于锂盐的铝合金自修复防腐涂层制备及性能研究[D]. 南京: 南京航空航天大学, 2023. |
| Cao X W. Preparation and properties of aluminum alloy self-repairing anticorrosive coating based on lithium salt[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023. | |
| [121] | Xiong C S, Li W H, Jin Z Q, et al. Preparation of phytic acid conversion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solution[J]. Corrosion Science, 2018, 139: 275-288. |
| [122] | 钟婷婷, 李冬皓, 李凤祥. 油气管道腐蚀与防护的研究进展[J]. 腐蚀与防护, 2025, 46(5): 81-89. |
| Zhong T T, Li D H, Li F X. Research progress on corrosion and protection of oil and gas pipelines[J]. Corrosion & Protection, 2025, 46(5): 81-89. | |
| [123] | 马刚, 张立功, 王兵存, 等. 航天器用镁合金防腐-热控一体化涂层制备工艺研究[J]. 中国涂料, 2017, 32(1): 59-63. |
| Ma G, Zhang L G, Wang B C, et al. Study on the preparation of anti-corrosion and thermal control integrative coatings for magnesium alloy in spacecrafts[J]. China Coatings, 2017, 32(1): 59-63. | |
| [124] | Cardoso Gonçalves G. Design et élaboration de revêtements hybrides biosourcés anti-corrosion pour l'industrie aéronautique via la méthodologie EISA[D]; Université de Pau et des Pays de l'Adour, 2022. |
| [1] | 胡家玮, 王聪, 刘美婧. 一种抑制隧道排水管道中结晶体形成的双层阻垢疏水涂层[J]. 化工学报, 2025, 76(6): 3053-3072. |
| [2] | 姬海燕, 刘家印, 吴海军, 何璟琳, 靳紫恒, 魏钿航, 江霞. 低温等离子体在生物质气化制氢中的应用研究进展[J]. 化工学报, 2025, 76(6): 2419-2433. |
| [3] | 康佳, 刘欢, 李海燕, 罗茂亮, 姚洪. 宽温区HCl/NaOH热介质中碳钢腐蚀行为及涂层性能研究[J]. 化工学报, 2025, 76(6): 2872-2885. |
| [4] | 郭乃胜, 朱小波, 王双, 陈平, 褚召阳, 王志臣. 聚氨酯改性沥青高低温性能及影响因素的研究进展[J]. 化工学报, 2025, 76(6): 2505-2523. |
| [5] | 张畅, 解强, 沙雨桐, 王炳杰, 梁鼎成, 刘金昌. 低灰低硅竹炭的制备及衍生硬炭的电化学性能[J]. 化工学报, 2025, 76(6): 3073-3083. |
| [6] | 李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357. |
| [7] | 陆艳秋, 狄扬, 石文博, 殷聪聪, 汪勇. 基于新型有机多孔聚合物的智能响应膜研究进展[J]. 化工学报, 2025, 76(5): 2101-2118. |
| [8] | 高冰冰, 许诺, 白云翔, 张春芳, 杨永强, 董亮亮. 氦气分离聚合物膜[J]. 化工学报, 2025, 76(5): 2119-2135. |
| [9] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [10] | 李中青, 王志远, 栾小建, 梁四凯, 王凯. 电沉积-低氧分压法制备MnO涂层及其抑制石脑油热裂解结焦性能研究[J]. 化工学报, 2025, 76(3): 1050-1063. |
| [11] | 陈弋翀, 贾星雨, 钟文宇, 施俞晖, 彭瑶, 孙嘉阳, 胡冬冬, 赵玲. 具有梯度结构的微孔热塑性聚氨酯及其性能[J]. 化工学报, 2025, 76(2): 897-908. |
| [12] | 翟紫航, 蒋杰, 李锦锦, 赵玲, 奚桢浩. 基于2,5-呋喃二甲酸的三元无规共聚酯PBSF的制备与性能[J]. 化工学报, 2025, 76(2): 868-878. |
| [13] | 应昕, 杜淼, 潘鹏举, 单国荣. 高折射率聚硫氨酯的合成、结构与性能[J]. 化工学报, 2025, 76(2): 858-867. |
| [14] | 宫政, 高秀鲁, 赵玲, 胡冬冬. 超临界CO2发泡PBAT/PLA复合材料及其形状记忆性能[J]. 化工学报, 2025, 76(2): 888-896. |
| [15] | 李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号