• •
收稿日期:2025-08-12
修回日期:2025-09-02
出版日期:2025-11-25
通讯作者:
卢春喜
作者简介:卢非赣(2000—),男,硕士研究生,2023210551@student.cup.edu.cn
基金资助:
Feigan LU(
), Daorun SI, Zihan YAN, Chunxi LU(
)
Received:2025-08-12
Revised:2025-09-02
Online:2025-11-25
Contact:
Chunxi LU
摘要:
为明确筒体结构对轴流式旋风分离器性能的影响规律,设计并搭建了大型冷模实验平台,以筒锥型(V-Cyclone-VC型)和直筒型(H-Cyclone-HC型)两种典型结构为研究对象,通过实验测量,分析了不同筒体结构下的压降特性、分离效率及内部流场特征。结果表明:在相同工况下,VC型旋分的分离效率整体高于HC型旋分,但其系统压降明显增加;两种结构的旋分在压降约为5.8 kPa时性能趋于一致,此压降临界点可作为实际工业应用的性能选择依据;流场分析显示,VC型旋分在分离空间内切向速度更高、轴向回流抽吸作用更强,利于颗粒向器壁迁移,降低颗粒逃逸风险;HC型旋分虽在分离效率方面略逊一筹,但内部流场均匀性更优,能耗更低。综合而言,VC型旋分适用于分离效率需求较高、能耗敏感度低的场景,而HC型旋分适用于对能耗控制要求较高、分离效率中等的工况。本研究为轴流式旋风分离器的结构设计与工业应用提供了重要的理论参考。
中图分类号:
卢非赣, 司道润, 闫子涵, 卢春喜. 筒体结构对轴流式旋风分离器的性能影响[J]. 化工学报, DOI: 10.11949/0438-1157.20250905.
Feigan LU, Daorun SI, Zihan YAN, Chunxi LU. Effects of cylindrical structure on the performance of axial cyclone separators[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250905.
| 参数标注 | VC型 | HC型 |
|---|---|---|
| 筒体直径D/mm | 400 | 400 |
| 筒体长度H1/mm | 590 | 590 |
| 排气管直径De/mm | 328 | 328 |
| 排气管插入直段深度S1/mm | 300 | 300 |
| 排气管插入锥段深度S2/mm | 250 | 250 |
| 升气管直径dr/mm | 200 | 200 |
| 锥段长度H2/mm | 860 | 860 |
| 排尘口直径Dc/mm | 140 | — |
| 叶片宽度W/mm | 26 | 26 |
| 叶片高度H0/mm | 250 | 250 |
| 叶片厚度δ/mm | 5 | 5 |
| 叶片出口缘角α/° | 25 | 25 |
表1 实验样机主要结构参数
Table 1 Main structural parameters of the experimental prototypes
| 参数标注 | VC型 | HC型 |
|---|---|---|
| 筒体直径D/mm | 400 | 400 |
| 筒体长度H1/mm | 590 | 590 |
| 排气管直径De/mm | 328 | 328 |
| 排气管插入直段深度S1/mm | 300 | 300 |
| 排气管插入锥段深度S2/mm | 250 | 250 |
| 升气管直径dr/mm | 200 | 200 |
| 锥段长度H2/mm | 860 | 860 |
| 排尘口直径Dc/mm | 140 | — |
| 叶片宽度W/mm | 26 | 26 |
| 叶片高度H0/mm | 250 | 250 |
| 叶片厚度δ/mm | 5 | 5 |
| 叶片出口缘角α/° | 25 | 25 |
| 物理性质 | 硅微粉 |
|---|---|
| 颗粒密度/kg/m3 | 2876 |
| 中位粒径/μm | 10.80 |
| 平均粒径/μm | 6.31 |
表2 实验物料参数
Table 2 Physical properties of experimental material
| 物理性质 | 硅微粉 |
|---|---|
| 颗粒密度/kg/m3 | 2876 |
| 中位粒径/μm | 10.80 |
| 平均粒径/μm | 6.31 |
对称性 指标 | 升气管入口处 | 筒体底部 | |||
|---|---|---|---|---|---|
| HC | VC | HC | VC | ||
| 数据图 | |||||
| N | 42 | 42 | 42 | 42 | |
| RMSD | 0.0503 | 0.0637 | 0.0151 | 0.0162 | |
| | Xmin | | 0.0589 | 0.0769 | 0.0025 | 0.0029 | |
表3 静压对称性指标
Table 3 Static pressure symmetry index
对称性 指标 | 升气管入口处 | 筒体底部 | |||
|---|---|---|---|---|---|
| HC | VC | HC | VC | ||
| 数据图 | |||||
| N | 42 | 42 | 42 | 42 | |
| RMSD | 0.0503 | 0.0637 | 0.0151 | 0.0162 | |
| | Xmin | | 0.0589 | 0.0769 | 0.0025 | 0.0029 | |
对称性 指标 | 升气管入口处 | 筒体底部 | |||
|---|---|---|---|---|---|
| HC | VC | HC | VC | ||
| 数据图 | |||||
| N | 42 | 42 | 42 | 42 | |
| RMSD | 0.0581 | 0.0760 | 0.0327 | 0.0374 | |
| | Xmin | | 0.0331 | 0.0426 | 0.0112 | 0.0209 | |
表4 切向速度对称性指标
Table 4 Tangential velocity symmetry index
对称性 指标 | 升气管入口处 | 筒体底部 | |||
|---|---|---|---|---|---|
| HC | VC | HC | VC | ||
| 数据图 | |||||
| N | 42 | 42 | 42 | 42 | |
| RMSD | 0.0581 | 0.0760 | 0.0327 | 0.0374 | |
| | Xmin | | 0.0331 | 0.0426 | 0.0112 | 0.0209 | |
| [1] | Zhao Y F, Li H, Ye M, et al. 3D numerical simulation of a large scale MTO fluidized bed reactor[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11354-11364. |
| [2] | Sun L Q, Li J F, Xie M, et al. A numerical simulation study of the dynamic instability of gas swirling flows in cyclones[J]. Processes, 2024, 12(9): 2002. |
| [3] | Huard M, Briens C, Berruti F, et al. A Review of Rapid Gas-Solid Separation Techniques[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1): 1-72. |
| [4] | Reinking Z, Whitty K J, Lighty J S. Design of a gas-solid-solid separator to remove ash from circulating fluidized bed reactors[J]. Powder Technology, 2022, 404: 117467. |
| [5] | Xu B H, Yu A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J]. Chemical Engineering Science, 1997, 52(16): 2785-2809. |
| [6] | Peng W M, Hoffmann A C, Dries H. Separation characteristics of swirl-tube dust separators[J]. AIChE Journal, 2004, 50(1): 87-96. |
| [7] | Thon A, Püttmann A, Hartge E U, et al. Simulation of catalyst loss from an industrial fluidized bed reactor on the basis of labscale attrition tests[J]. Powder Technology, 2011, 214(1): 21-30. |
| [8] | Oloruntoba A, Zhang Y M, Hsu C S. State-of-the-art review of fluid catalytic cracking (FCC) catalyst regeneration intensification technologies[J]. Energies, 2022, 15(6): 2061. |
| [9] | Issangya A S, Cocco R, Chew J W. State-of-the-art review of fluidized bed stripper internals[J]. Chemical Engineering Journal, 2023, 452: 139290. |
| [10] | Sakin A, Karagoz I, Avci A. Performance analysis of axial and reverse flow cyclone separators[J]. Chemical Engineering and Processing - Process Intensification, 2019, 144: 107630. |
| [11] | Kaya F, Karagoz I, Avci A. Effects of surface roughness on the performance of tangential inlet cyclone separators[J]. Aerosol Science and Technology, 2011, 45(8): 988-995. |
| [12] | Qian F P, Wu Y P. Effects of the inlet section angle on the separation performance of a cyclone[J]. Chemical Engineering Research and Design, 2009, 87(12): 1567-1572. |
| [13] | Mazyan W I, Ahmadi A, Brinkerhoff J, et al. Enhancement of cyclone solid particle separation performance based on geometrical modification: Numerical analysis[J]. Separation and Purification Technology, 2018, 191: 276-285. |
| [14] | Soliman M M, El-shaer Y, Elsayed K, et al. Performance enhancement of gas cyclone with streamlined ports using CFD simulations[J]. Journal of Engineering and Applied Science, 2025, 72(1): 4. |
| [15] | Hu B S, Liu S, Wang C Z, et al. Structural optimization of high-pressure polyethylene cyclone separator based on energy efficiency parameters[J]. Processes, 2023, 11(3): 691. |
| [16] | Brar L S, Sharma R P, Elsayed K. The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone[J]. Powder Technology, 2015, 286: 668-677. |
| [17] | Mao Y Q, Chertovskih R, Cai L. Numerical study of the gas–solid separation performance of axial flow cyclone separators[J]. Inventions, 2024, 9(2): 34. |
| [18] | 牛宏斌, 邱丽, 杨景轩, 等. 筒体直径对旋风分离器性能的影响及其流场机制[J]. 化工学报, 2025, 76(5): 2367-2376. |
| Niu H B, Qiu L, Yang J X, et al. Effect of cylinder diameter on cyclone performance and its flow field mechanism[J]. CIESC Journal, 2025, 76(5): 2367-2376. | |
| [19] | 王锁芳, 赵浩宇, 柴金孟, 等. 出口结构对轴流式旋风分离器性能影响的数值模拟[J]. 安全与环境学报, 2024, 24(2): 759-767. |
| Wang S F, Zhao H Y, Chai J M, et al. Numerical simulation of the effect of export structure on the performance of axial flow cyclone separator[J]. Journal of Safety and Environment, 2024, 24(2): 759-767. | |
| [20] | Hsiao T C, Huang S H, Hsu C W, et al. Effects of the geometric configuration on cyclone performance[J]. Journal of Aerosol Science, 2015, 86: 1-12. |
| [21] | 金海峰, 张永民, 李国锋, 等. 甲醇制烯烃装置催化剂细粉跑损问题剖析[J]. 石油学报(石油加工), 2021, 37(4): 779-788. |
| Jin H F, Zhang Y M, Li G F, et al. Root cause of fine catalyst particle loss in methanol to olefin unit[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(4): 779-788. | |
| [22] | 赵风云, 曹占欣, 刘硕磊, 等. 流化床甲醇制汽油工艺条件的研究[J]. 现代化工, 2017, 37(7): 166-170. |
| Zhao F Y, Cao Z X, Liu S L, et al. Research on process conditions of methanol to gasoline by fluidized bed[J]. Modern Chemical Industry, 2017, 37(7): 166-170. | |
| [23] | 侯凯军, 高金森, 马安, 等. 重油催化裂解制低碳烯烃工艺技术研究进展[J]. 应用化工, 2022, 51(11): 3278-3284. |
| Hou K J, Gao J S, Ma A, et al. Research progress in heavy oil catalytic pyrolysis technology for light olefins[J]. Applied Chemical Industry, 2022, 51(11): 3278-3284. | |
| [24] | 韩超一, 张娇玉, 尤廷正, 等. 湍动流化床中甲醇制烃反应的研究[J]. 炼油技术与工程, 2015, 45(8): 6-11. |
| Han C Y, Zhang J Y, You T Z, et al. Study on methanol to hydrocarbon reaction in turbulent fluidized bed reactor[J]. Petroleum Refinery Engineering, 2015, 45(8): 6-11. | |
| [25] | 范怡平, 卢春喜. 离心力场-移动床耦合气固分离装备的研究进展[J]. 化工学报, 2023, 74(1): 157-169. |
| Fan Y P, Lu C X. Research progress on dedust scheme of coupling centrifugal force field with moving bed filtration[J]. CIESC Journal, 2023, 74(1): 157-169. | |
| [26] | 金有海, 时铭显. 旋风分离器相似放大试验研究[J]. 石油大学学报(自然科学版), 1990, 14(5): 46-55. |
| Jin Y H, Shi M X. Experimental studies on scale-up of cyclone separator[J]. Journal of the University of Petroleum, China, 1990, 14(5): 46-55. | |
| [27] | 时铭显. PV型旋风分离器的性能及工业应用[J]. 石油炼制与化工, 1990, 21(1): 37-42. |
| Shi M X. The performance and industrial application of model pv cyclone separator[J]. Petroleum Processing and Petrochemicals, 1990, 21(1): 37-42. | |
| [28] | 孙国刚, 汪云瑛, 时铭显. PV型旋风分离器冷态性能试验及其计算[J]. 石油炼制与化工, 1989, 20(4): 18-26. |
| Sun G G, Wang Y Y, Shi M X. Performance study of type pv cyclone separator[J]. Petroleum Processing and Petrochemicals, 1989, 20(4): 18-26. | |
| [29] | Mao Y, Pu W, Zhang H, et al. Orthogonal experimental design of an axial flow cyclone separator[J]. Chemical Engineering and Processing - Process Intensification, 2019, 144: 107645. |
| [30] | Wang C W, Ma Y S, Sui W X. The secondary flows in a cyclone separator: a review[J]. Processes, 2023, 11(10): 2935. |
| [31] | Si D R, Yan Z H, Lu C X. Performance experiments and pressure drop prediction modelling of an energy-saving cyclone separator[J]. Fuel, 2024, 372: 132165. |
| [32] | Derksen J J, Van Den Akker H E A. Simulation of vortex core precession in a reverse-flow cyclone[J]. AIChE Journal, 2000, 46(7): 1317-1331. |
| [33] | Brar L S, Derksen J J. Revealing the details of vortex core precession in cyclones by means of large-eddy simulation[J]. Chemical Engineering Research and Design, 2020, 159: 339-352. |
| [34] | Grossmann S, Lohse D, Sun C. Velocity profiles in strongly turbulent Taylor-Couette flow[J]. Physics of Fluids, 2014, 26(2): 025114. |
| [35] | Muschelknautz E, Greif V. Cyclones and other gas: solids separators[M]//Circulating Fluidized Beds. Dordrecht: Springer Netherlands, 1997: 181-213. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [3] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [4] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [5] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [6] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [7] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [8] | 邹家庆, 张肇钰, 张建国, 张博宇, 刘定胜, 毛庆, 王挺, 李建军. 碱水制氢电解槽极板通道中气泡的生成及演化性质[J]. 化工学报, 2025, 76(9): 4786-4799. |
| [9] | 贾志勇, 沈宪琨, 蓝晓程, 王铁峰. 气体密度对高压流态化影响的CFD-DEM模拟[J]. 化工学报, 2025, 76(9): 4383-4397. |
| [10] | 梁晓江, 陈薇薇, 罗佳南, 费浩天, 叶雪蕾, 李文豪, 聂勇. 电分散管式填充床中荷电气泡的分散特性研究[J]. 化工学报, 2025, 76(8): 3915-3931. |
| [11] | 张淇栋, 艾立强, 马原, 吴胜宝, 王磊, 厉彦忠. 基于一维漂移流模型的低温管路预冷过程两相流动与换热特性研究[J]. 化工学报, 2025, 76(8): 3842-3852. |
| [12] | 刘璐, 杨莹, 杨浩文, 王太, 王腾, 董新宇, 闫润. 星形亲水区组合表面冷凝液滴脱落特性实验研究[J]. 化工学报, 2025, 76(8): 3905-3914. |
| [13] | 蒋明虎, 汪帆, 邢雷, 赵立新, 李新亚, 陈丁玮. 井下含气对油水分离管柱流场特性及性能影响[J]. 化工学报, 2025, 76(7): 3361-3372. |
| [14] | 米晓天, 刘宏臣, 王克军, 唐文娜, 徐永伟, 杨梅. 微通道内两相吸收剂TETA/DEEA吸收CO2过程的传质研究[J]. 化工学报, 2025, 76(6): 2667-2677. |
| [15] | 张亿韵, 陈恒志, 李洋, 慕长安, 王泉海. 湍流对双组分颗粒流化床气体径向扩散的影响[J]. 化工学报, 2025, 76(6): 2559-2568. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号