化工学报

• •    

燃煤发电耦合压缩S-CO₂储能系统构建与热力学分析

王迪1(), 李胜杰1, 崔颖晗2, 孙灵芳1, 李晓莉3()   

  1. 1.东北电力大学自动化工程学院,吉林 吉林 132000
    2.长春工业大学人文信息学院电气与电子工程学院,吉林 长春 130122
    3.东北电力大学能源与动力工程学院,吉林 吉林 132000
  • 收稿日期:2025-09-10 修回日期:2025-12-10 出版日期:2025-12-11
  • 通讯作者: 李晓莉
  • 作者简介:王迪(1989—),男,博士,副教授,wd1989125@163.com
  • 基金资助:
    国家自然科学基金项目(52306004)

Construction and thermodynamic analysis of a coupled compression S-CO₂ energy storage system for coal-fired power generation

Di WANG1(), Shengjie LI1, Yinghan CUI2, Lingfang SUN1, Xiaoli LI3()   

  1. 1.School of Automation Engineering, Northeast Electric Power University, Jilin 132000, Jilin, China
    2.School of Electrical and Electronic Engineering, School of Humanities and Information, Changchun University of Technology, Changchun 130122, Jilin, China
    3.School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132000, Jilin, China
  • Received:2025-09-10 Revised:2025-12-10 Online:2025-12-11
  • Contact: Xiaoli LI

摘要:

随着我国“双碳”战略的深入推进,风电、光伏等间歇性可再生能源发电占比不断升高,导致电网调峰调频需求急剧增加。为显著提升传统燃煤发电机组运行灵活性,本研究提出了一种压缩超临界二氧化碳(S-CO₂)储能系统与燃煤机组耦合的方案。通过建立系统热力学模型,并基于㶲分析原理,深入研究关键运行参数对系统整体及各组成部件不可逆损失分布的影响。研究结果表明:该系统可实现68.12%的往返效率,在三种典型运行方式下的㶲效率分别为56.18%、57.84%和62.94%;S-CO₂工质流量、压缩机组入口压力及压缩机效率是对系统㶲效率影响最为显著的关键参数。研究成果可对未来建设S-CO₂储能循环工程应用奠定理论基础。

关键词: 燃煤机组, 储能, 超临界二氧化碳, ?分析

Abstract:

With the in-depth advancement of China's "dual carbon" strategy, the proportion of intermittent renewable energy generation such as wind power and photovoltaic power is constantly increasing, leading to a sharp rise in the demand for peak shaving and frequency regulation in the power grid. To significantly enhance the operational flexibility of traditional coal-fired power units, this study proposes a scheme for coupling a compressed supercritical carbon dioxide (S-CO₂) energy storage system with coal-fired units. By establishing a thermodynamic model of the system and based on the principle of exergy analysis, the influence of key operating parameters on the distribution of irreversible losses in the overall system and its components is deeply investigated. The research results show that the system can achieve a round-trip efficiency of 68.12%, with exergy efficiencies of 56.18%, 57.84%, and 62.94% under three typical operating modes; the S-CO₂ working fluid flow rate, the inlet pressure of the compressor, and the compressor efficiency are the most significant parameters affecting the exergy efficiency of the system. The research findings can lay a theoretical foundation for the future construction of CO₂ energy storage cycle engineering applications.

Key words: coal-fired power unit, energy storage, supercritical carbon dioxide, exergy analysis

中图分类号: