[1] |
Intergovernmental Panel on Climate Change, Working Group Ⅱ. Climate Change 2014: Impacts, Adaptation, and Vulnerability [R]. UN, 2014.
|
[2] |
Zhu Jiahua (朱家骅), Guo Xingnan (郭鑫楠), Xie Heping (谢和平), et al. Thermodynamics cognizance of CCS and CCU routes for CO2 emission reduction [J]. Journal of Sichuan University: Engineering Science Edition (四川大学学报: 工程科学版), 2013, 45 (5): 1-7.
|
[3] |
Liu Chang (刘畅), Lu Xiaohua (陆小华). Carbon reduction pattern in China: comparison of CCS and biomethane route [J]. CIESC Journal (化工学报), 2013, 64 (1): 7-10.
|
[4] |
Darde V, Maribo-Mogensen B, van Well W J M, et al. Process simulation of CO2 capture with aqueous ammonia using the extended UNIQUAC model [J]. International Journal of Greenhouse Gas Control, 2012, 10 (1): 74-87.
|
[5] |
Hu Y, Naito S, Kobayashi N, et al. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases [J]. Fuel, 2000, 79 (15): 1925-1932.
|
[6] |
Song K, Jang Y N, Kim W, et al. Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum [J]. Energy, 2014, 65 (1): 527-532.
|
[7] |
Zhu Jiahua (朱家骅), Xie Heping (谢和平), Xia Sulan (夏素兰), et al. One step clean process to convert flue gas CO2 by phosphogypsum with low energy and water cost [P]: CN, 201210223218.4. 2014-10-15.
|
[8] |
Wang T, Wang J, Jin Y. Slurry reactors for gas-to-liquid processes: a review [J]. Industrial & Engineering Chemistry Research, 2007, 46 (18): 5824-5847.
|
[9] |
Dagaonkar M V, Beenackers A A, Pangarkar V G. Enhancement of gas-liquid mass transfer by small reactive particles at realistically high mass transfer coefficients: absorption of sulfur dioxide into aqueous slurries of Ca(OH)2 and Mg(OH)2 particles [J]. Chemical Engineering Journal, 2001, 81 (1): 203-212.
|
[10] |
Bravo R, Camacho R, Moya V, García L. Desulphurization of SO2-N2 mixtures by limestone slurries [J]. Chemical Engineering Science, 2002, 57 (11): 2047-2058.
|
[11] |
Liu Shandang (刘山当), Zhu Jiahua (朱家骅), Xia Sulan (夏素兰), et al. Experimental study on the CO2 absorption by gypsum/aqueous ammonia slurries [J]. Sichuan Chemical Engineering (四川化工), 2004, 7 (3): 1-3.
|
[12] |
Ramachandran P. Gas absorption in slurries containing fine particles: review of models and recent advances [J]. Industrial & Engineering Chemistry Research, 2007, 46 (10): 3137-3152.
|
[13] |
Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena [M]. New York: John Wiley & Sons, 2007.
|
[14] |
Ramachandran P, Sharma M. Absorption with fast reaction in a slurry containing sparingly soluble fine particles [J]. Chemical Engineering Science,1969, 24 (11): 1681-1686.
|
[15] |
Puxty G, Rowland R, Attalla M. Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine [J]. Chemical Engineering Science, 2010, 65 (2): 915-922.
|
[16] |
Jeschke A A, Vosbeck K, Dreybrodt W. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics [J]. Geochimica et Cosmochimica Acta, 2001, 65 (1): 27-34.
|
[17] |
Raju K U, Atkinson G. The thermodynamics of “scale” mineral solubilities (Ⅲ): Calcium sulfate in aqueous sodium chloride [J]. Journal of Chemical and Engineering Data, 1990, 35 (3): 361-367.
|
[18] |
Elkanzi E M, Chalabi M F. Kinetics of the conversion of calcium sulfate to ammonium sulfate using ammonium carbonate aqueous solution [J]. Industrial & Engineering Chemistry Research, 1991, 30 (6): 1289-1293.
|
[19] |
Wang Zining (王子宁), Zhou Jiabei (周加贝), Zhu Jiahua (朱家骅), et al. Dissolution kinetics of calcium sulfate dyhydrate [J]. CIESC Journal (化工学报), 2015, 66 (3): 1001-1006.
|