化工学报 ›› 2016, Vol. 67 ›› Issue (1): 209-217.DOI: 10.11949/j.issn.0438-1157.20150989
徐俊波1, 汪宇莹1,2, 杨超1
收稿日期:
2015-06-25
修回日期:
2015-10-30
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
杨超
基金资助:
国家自然科学基金项目(21490584,91534105,21306199);国家重点基础研究发展计划项目(2013CB632601)。
XU Junbo1, WANG Yuying1,2, YANG Chao1
Received:
2015-06-25
Revised:
2015-10-30
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Natural Science Foundation of China (21490584, 91534105, 21306199) and the National Basic Research Program of China (2013CB632601).
摘要:
纳米受限流体因其异于宏观流体的特殊性,在膜分离、介孔催化等领域均具有广阔的应用前景。壁面附近流体的分层有序结构及其对流体动力学特性的影响,是纳米受限流体区别于宏观流体的关键所在。从纳米受限流体的分子堆积结构及双电层结构出发,总结了模拟计算及实验研究中发现的规律,对纳米受限流体自扩散性质、壁面滑移现象等方面的进展进行了综述,探讨了宏观连续介质模型在纳米受限流体中的适用性,并就纳米受限流体动力学的发展进行了展望。
中图分类号:
徐俊波, 汪宇莹, 杨超. 纳米受限流体的结构及流体动力学特性[J]. 化工学报, 2016, 67(1): 209-217.
XU Junbo, WANG Yuying, YANG Chao. Structure and hydrodynamics characteristics of fluids under nano-confinement[J]. CIESC Journal, 2016, 67(1): 209-217.
[1] | MIJATOVIC D, EIJKEL J C, VAN DEN BERG A. Technologies for nanofluidic systems: top-down vs. bottom-up—a review [J]. Lab. Chip., 2005, 5(5): 492-500. DOI: 10.1039/b416951d. |
[2] | PERRY J L, KANDLIKAR S G. Review of fabrication of nanochannels for single phase liquid flow [J]. Microfluid. Nanofluid., 2005, 2(3): 185-193. DOI: 10.1007/s10404-005-0068-1. |
[3] | ABGRALL P, NGUYEN N T. Nanofluidic devices and their applications [J]. Anal. Chem., 2008, 80(7): 2326-2341. DOI: 10.1021/ac702296u. |
[4] | GOLDBERGER J, FAN R, YANG P. Inorganic nanotubes: a novel platform for nanofluidics [J]. Acc. Chem. Res., 2006, 39(4): 239-248. DOI: 10.1021/ar040274h. |
[5] | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象 [J]. 化工学报, 2013, 64(1):63-75. DOI: 10.3969/j.issn. 0438-1157. 2013.01.009.CHEN G W, ZHAO Y C, YUE J, et al. Transport phenomena in micro-chemical engineering [J]. CIESC Journal, 2013, 64(1):63-75. DOI: 10.3969/j.issn.0438-1157.2013.01.009. |
[6] | BOCQUET L, CHARLAIX E. Nanofluidics, from bulk to interfaces [J]. Chem. Soc. Rev., 2010, 39(3): 1073-1095. DOI: 10.1039/b909366b. |
[7] | EIJKEL J C T, VAN DEN BERG A. Nanofluidics: what is it and what can we expect from it? [J]. Microfluid. Nanofluid., 2005, 1(3): 249-267. DOI: 10.1007/s10404-004-0012-9. |
[8] | SPARREBOOM W, VAN DEN BERG A, Eijkel J C T. Transport in nanofluidic systems: a review of theory and applications [J]. New J. Phys., 2010, 12(1): 015004. DOI: 10.1088/1367-2630/12/1/015004. |
[9] | ALEXIADIS A, KASSINOS S. Molecular simulation of water in carbon nanotubes [J]. Chem. Rev., 2008, 108(12): 5014-5034. DOI: 10.1021/cr078140f. |
[10] | REISNER W, PEDERSEN J N, AUSTIN R H. DNA confinement in nanochannels: physics and biological applications [J]. Rep. Prog. Phys., 2012, 75(10): 106601. DOI: 10.1088/0034-4885/75/10/106601. |
[11] | STRIOLO A. The mechanism of water diffusion in narrow carbon nanotubes [J]. Nano Lett., 2006, 6(4): 633-639. DOI: 10.1021/nl052254u. |
[12] | THOMAS J A, MCGAUGHEY A J. Reassessing fast water transport through carbon nanotubes [J]. Nano Lett., 2008, 8(9): 2788-2793. DOI: 10.1021/nl8013617. |
[13] | HUMPLIK T, LEE J, O'HERN S C, et al. Nanostructured materials for water desalination [J]. Nanotechnology, 2011, 22(29): 292001. DOI: 10.1088/0957-4484/22/29/292001. |
[14] | CORRY B. Designing carbon nanotube membranes for efficient water desalination [J]. J. Phys. Chem. B, 2008, 112(5): 1427-1434. DOI: 10.1021/jp709845u. |
[15] | CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev., 1997, 97(6): 2373-2420. DOI: 10.1021/cr960406n. |
[16] | BEARDEN S, ZHANG G. The effects of the electrical double layer on giant ionic currents through single-walled carbon nanotubes [J]. Nanotechnology, 2013, 24(12): 125204. DOI: 10.1088/0957-4484/24/12/125204. |
[17] | REN Y, STEIN D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels [J]. Nanotechnology, 2008, 19(19): 195707. DOI: 10.1088/0957-4484/19/19/195707. |
[18] | GUAN W, LI S X, REED M A. Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications [J]. Nanotechnology, 2014, 25(12): 122001. DOI: 10.1088/0957-4484/25/12/122001. |
[19] | XUE Y, CHEN M. Dynamics of molecules translocating through carbon nanotubes as nanofluidic channels [J]. Nanotechnology, 2006, 17(20): 5216-5223. DOI: 10.1088/0957-4484/17/20/029. |
[20] | YAN R X, LIANG W J, FAN R, et al. Nanofluidic diodes based on nanotube heterojunctions [J]. Nano Lett., 2009, 9(11): 3820-3825. DOI: 10.1021/nl9020123. |
[21] | DELLAGO C, NAOR M M, HUMMER G. Proton transport through water-filled carbon nanotubes [J]. Phys. Rev. Lett., 2003, 90(10): 105902. DOI: 10.1103/PhysRevLett.90.105902. |
[22] | HUMMER G, RASAIAH J C, NOWORYTA J P. Water conduction through the hydrophobic channel of a carbon nanotube [J]. Nature, 2001, 414(6860): 188-190. DOI: 10.1038/35102535. |
[23] | WANG J, ZHU Y, ZHOU J, et al. Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes [J]. Phys. Chem. Chem. Phys., 2004, 6(4): 829-835. DOI: 10.1039/b313307a. |
[24] | LIU Y C, WANG Q, WU T, et al. Fluid structure and transport properties of water inside carbon nanotubes [J]. J. Chem. Phys., 2005, 123(23): 234701. DOI: 10.1063/1.2131070. |
[25] | KOGA K, GAO G T, TANAKA H, et al. Formation of ordered ice nanotubes inside carbon nanotubes [J]. Nature, 2001, 412(6849): 802-805. DOI: 10.1038/35090532. |
[26] | COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene [J]. Nano Lett., 2012, 12(7): 3602-3608. DOI: 10.1021/nl3012853. |
[27] | MATSUDA K, HIBI T, KADOWAKI H, et al. Water dynamics inside single-wall carbon nanotubes: NMR observations [J]. Phys.Rev. B, 2006, 74(7):073415. DOI: 10.1103/PhysRevB.74.073415. |
[28] | LIU L, PATEY G N. Simulations of water transport through carbon nanotubes: how different water models influence the conduction rate [J]. J. Chem. Phys., 2014, 141(18): 18C518. DOI: 10.1063/1.4896689. |
[29] | MOGHIMI KHEIRABADI A, MOOSAVI A, AKBARZADEH A M. Nanofluidic transport inside carbon nanotubes [J]. J. Phys. D: Appl. Phys., 2014, 47(6): 065304. DOI: 10.1088/0022-3727/47/6/065304. |
[30] | HUBER P. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media [J]. J. Phys. Condens. Matter., 2015, 27(10): 103102. DOI: 10.1088/0953-8984/27/10/103102. |
[31] | HOANG H, GALLIERO G. Local viscosity of a fluid confined in a narrow pore [J]. Phys. Rev. E, 2012, 86(2): 021202. DOI: 10.1103/PhysRevE.86.021202. |
[32] | XU J B, YANG C, SHENG Y J, et al. Apparent hydrodynamic slip induced by density inhomogeneities at the fluid-solid interfaces [J]. Soft Matter, 2015, 11:6916-6920. DOI: 10.1039/c5sm01627d. |
[33] | SU J Y, GUO H X. Effect of nanochannel dimension on the transport of water molecules [J]. J. Phys. Chem. B, 2012, 116(20): 5925-5932. DOI: 10.1021/jp211650s. |
[34] | SHOLL D S, JOHNSON J K. Materials science. Making high-flux membranes with carbon nanotubes [J]. Science, 2006, 312(5776): 1003-1004. DOI: 10.1126/science.1127261. |
[35] | GORDILLO M C, MARTÍ J. Hydrogen bond structure of liquid water confined in nanotubes [J]. Chem. Phys. Lett., 2000, 329(5-6): 341-345. DOI: 10.1016/s0009-2614(00)01032-0. |
[36] | ALEXIADIS A, KASSINOS S. The density of water in carbon nanotubes [J]. Chem. Eng. Sci., 2008, 63(8): 2047-2056. DOI: 10.1016/j.ces.2007.12.035. |
[37] | MENG Z, CHEN Y, LI X, et al. Cooperative effect of pH-dependent ion transport within two symmetric-structured nanochannels [J]. ACS Appl. Mater. Interfaces, 2015, 7(14): 7709-7716. DOI: 10.1021/acsami.5b00647. |
[38] | MORTENSEN N A, OLESEN L H, BRUUS H. Transport coefficients for electrolytes in arbitrarily shaped nano-and microfluidic channels [J]. New J. Phys., 2006, 8(3): 37-37. DOI: 10.1088/1367-2630/8/3/037. |
[39] | SCHOCH R B, HAN J, RENAUD P. Transport phenomena in nanofluidics [J]. Rev. Mod. Phys., 2008, 80(3): 839-883. DOI: 10.1103/RevModPhys.80.839. |
[40] | PLECIS A, SCHOCH R B, RENAUD P. Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip [J]. Nano Lett., 2005, 5(6): 1147-1155. DOI: 10.1021/nl050265h. |
[41] | GONG X, LI J, GUO C, et al. Molecular switch for tuning ions across nanopores by an external electric field [J]. Nanotechnology, 2013, 24(2): 025502. DOI: 10.1088/0957-4484/24/2/025502. |
[42] | ZHAO J, CULLIGAN P J, QIAO Y, et al. Electrolyte solution transport in electropolar nanotubes [J]. J. Phys. Condens. Matter., 2010, 22(31): 315301. DOI: 10.1088/0953-8984/22/31/315301. |
[43] | TAGHAVI F, JAVADIAN S, HASHEMIANZADEH S M. Molecular dynamics simulation of single-walled silicon carbide nanotubes immersed in water [J]. J. Mol. Graph. Model., 2013, 44: 33-43. DOI: 10.1016/j.jmgm.2013.04.012. |
[44] | MUKHERJEE B, MAITI P K, DASGUPTA C, et al. Strong correlations and fickian water diffusion in narrow carbon nanotubes [J]. J. Chem. Phys., 2007, 126(12): 124704. DOI: 10.1063/1.2565806. |
[45] | MUKHERJEE B, MAITI P K, DASGUPTA C, et al. Single-file diffusion of water inside narrow carbon nanorings [J]. ACS Nano, 2010, 4(2): 985-991. DOI: 10.1021/nn900858a. |
[46] | BANDOW B, HESS S, KRÖGER M. Pressure, dynamics, and structure of a simple particle system confined in a soft nanopore [J]. Physica A, 2004, 337(3-4): 443-469. DOI: 10.1016/j.physa. 2004.02.006. |
[47] | AGGARWAL N, SOOD J, TANKESHWAR K. Anisotropic diffusion of a fluid confined to different geometries at the nanoscale [J]. Nanotechnology, 2007, 18(33): 335707. DOI: 10.1088/0957-4484/18/33/335707. |
[48] | 徐俊波, 温浩, 杨超. 受限空间分子自扩散性质的耗散粒子动力学模拟 [J]. 中国科学:化学, 2015, 45(1): 42-48. DOI: 10.1360/n032014-00240.XU J B, WEN H, YANG C. Dissipative particle dynamics simulation of molecule self-diffusion under cylindrical confinement [J]. Scientia Sinica Chimica, 2015, 45(1): 42-48. DOI: 10.1360/n032014-00240. |
[49] | SENDNER C, HORINEK D, BOCQUET L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion [J]. Langmuir, 2009, 25(18): 10768-10781. DOI: 10.1021/la901314b. |
[50] | BOCQUET L, BARRAT J L. On the Green-Kubo relationship for the liquid-solid friction coefficient [J]. J. Chem. Phys., 2013, 139(4): 044704. DOI: 10.1063/1.4816006. |
[51] | HUANG K, SZLUFARSKA I. Green-Kubo relation for friction at liquid-solid interfaces [J]. Phys. Rev. E, 2014, 89(3): 032119. DOI: 10.1103/PhysRevE.89.032119. |
[52] | RUCKENSTEIN E, RAJORA P. On the no-slip boundary condition of hydrodynamics [J]. J. Colloid Interf. Sci., 1983, 96(2): 488-491. DOI: 10.1016/0021-9797(83)90050-4. |
[53] | VINOGRADOVA O I. Slippage of water over hydrophobic surfaces [J]. Int. J. Miner. Process., 1999, 56(1-4): 31-60. DOI: 10.1016/s0301-7516(98)00041-6. |
[54] | RUCKENSTEIN E, CHURAEV N. A possible hydrodynamic origin of the forces of hydrophobic attraction [J]. J. Colloid Interf. Sci., 1991, 147(2): 535-538. DOI: 10.1016/0021-9797(91)90188-e. |
[55] | CHEN Q. Enhanced fluid flow through nanopores by polymer brushes [J]. Langmuir, 2014, 30(27): 8119-8123. DOI: 10.1021/la501781h. |
[56] | HUANG D M, SENDNER C, HORINEK D, et al. Water slippage versus contact angle: a quasiuniversal relationship [J]. Phys. Rev. Lett., 2008, 101(22): 226101. DOI: 10.1103/PhysRevLett.101.226101. |
[57] | QIAO R, ALURU N R. Charge inversion and flow reversal in a nanochannel electro-osmotic flow [J]. Phys. Rev.Lett., 2004, 92(19): 198301. DOI: 10.1103/PhysRevLett.92.198301. |
[58] | 汪宇莹, 徐俊波, 杨超. 纳米通道内流体流动的耗散粒子动力学模拟[C]//中国力学学会办公室. 中国力学大会-2015论文摘要集. 上海: 中国力学学会办公室, 2015: MS4216.WANG Y Y, XU J B, YANG C. Dissipative particle dynamics simulaion of flow within nanochannels[C]//The Chinese Society of Theoretical and Applied Mechanics. The Chinese Congress of Theoretical and Applied Mechanics (CCTAM2015). Shanghai, China: The Chinese Society of Theoretical and Applied Mechanics, 2015: MS4216.mena in nanofluidics[J]. Rev. Mod. Phys., 2008, 80(3): 839-883. DOI: 10.1103/RevModPhys.80.839. |
[40] | PLECIS A, SCHOCH R B, RENAUD P. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip[J]. Nano Lett., 2005, 5(6): 1147-1155. DOI: 10.1021/nl050265h. |
[41] | GONG X, LI J, GUO C, et al. Molecular switch for tuning ions across nanopores by an external electric field[J]. Nanotechnology, 2013, 24(2): 025502. DOI: 10.1088/0957-4484/24/2/025502. |
[42] | ZHAO J, CULLIGAN P J, QIAO Y, et al. Electrolyte solution transport in electropolar nanotubes[J]. J. Phys. Condens. Matter., 2010, 22(31): 315301. DOI: 10.1088/0953-8984/22/31/315301. |
[43] | TAGHAVI F, JAVADIAN S, HASHEMIANZADEH S M. Molecular dynamics simulation of single-walled silicon carbide nanotubes immersed in water[J]. J. Mol. Graph. Model., 2013, 44: 33-43. DOI: 10.1016/j.jmgm.2013.04.012. |
[44] | MUKHERJEE B, MAITI P K, DASGUPTA C, et al. Strong correlations and fickian water diffusion in narrow carbon nanotubes[J]. J. Chem. Phys., 2007, 126(12): 124704. DOI: 10.1063/1.2565806. |
[45] | MUKHERJEE B, MAITI P K, DASGUPTA C, et al. Single-file diffusion of water inside narrow carbon nanorings[J]. ACS Nano, 2010, 4(2): 985-991. DOI: 10.1021/nn900858a. |
[46] | BANDOW B, HESS S, KRÖGER M. Pressure, dynamics, and structure of a simple particle system confined in a soft nanopore[J]. Physica A, 2004, 337(3-4): 443-469. DOI: 10.1016/j.physa.2004.02.006. |
[47] | AGGARWAL N, SOOD J, TANKESHWAR K. Anisotropic diffusion of a fluid confined to different geometries at the nanoscale[J]. Nanotechnology, 2007, 18(33): 335707. DOI: 10.1088/0957-4484/18/33/335707. |
[48] | 徐俊波, 温浩, 杨超. 受限空间分子自扩散性质的耗散粒子动力学模拟[J]. 中国科学:化学, 2015, 45(1): 42-48. DOI: 10.1360/n032014-00240. XU J B, WEN H, YANG C. Dissipative particle dynamics simulation of molecule self-diffusion under cylindrical confinement[J]. Scientia Sinica Chimica, 2015, 45(1): 42-48. DOI: 10.1360/n032014-00240. |
[49] | SENDNER C, HORINEK D, BOCQUET L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion[J]. Langmuir, 2009, 25(18): 10768-10781. DOI: 10.1021/la901314b. |
[50] | BOCQUET L, BARRAT J L. On the green-kubo relationship for the liquid-solid friction coefficient[J]. J. Chem. Phys., 2013, 139(4): 044704. DOI: 10.1063/1.4816006. |
[51] | HUANG K, SZLUFARSKA I. Green-kubo relation for friction at liquid-solid interfaces[J]. Phys. Rev. E, 2014, 89(3): 032119. DOI: 10.1103/PhysRevE.89.032119. |
[52] | RUCKENSTEIN E, RAJORA P. On the no-slip boundary condition of hydrodynamics[J]. J. Colloid Interf. Sci., 1983, 96(2): 488-491. DOI: 10.1016/0021-9797(83)90050-4. |
[53] | VINOGRADOVA O I. Slippage of water over hydrophobic surfaces[J]. Int. J. Miner. Process., 1999, 56(1-4): 31-60. DOI: 10.1016/s0301-7516(98)00041-6. |
[54] | RUCKENSTEIN E, CHURAEV N. A possible hydrodynamic origin of the forces of hydrophobic attraction[J]. J. Colloid Interf. Sci., 1991, 147(2): 535-538. DOI: 10.1016/0021-9797(91)90188-e. |
[55] | CHEN Q. Enhanced fluid flow through nanopores by polymer brushes[J]. Langmuir, 2014, 30(27): 8119-8123. DOI: 10.1021/la501781h. |
[56] | HUANG D M, SENDNER C, HORINEK D, et al. Water slippage versus contact angle: A quasiuniversal relationship[J]. Phys. Rev. Lett., 2008, 101(22): 226101. DOI: 10.1103/PhysRevLett.101.226101. |
[57] | QIAO R, ALURU N R. Charge inversion and flow reversal in a nanochannel electro-osmotic flow[J]. Phys. Rev.Lett., 2004, 92(19): 198301. DOI: 10.1103/PhysRevLett.92.198301. |
[58] | 汪宇莹, 徐俊波, 杨超. 纳米通道内流体流动的耗散粒子动力学模拟[C]//中国力学学会办公室. 中国力学大会-2015论文摘要集. 上海: 中国力学学会办公室, 2015: MS4216.WANG Y Y, XU J B, YANG C. Dissipative particle dynamics simulaion of flow within nanochannels[C]//The Chinese Society of Theoretical and Applied Mechanics. The Chinese Congress of Theoretical and Applied Mechanics (CCTAM2015). Shanghai, China: The Chinese Society of Theoretical and Applied Mechanics, 2015: MS4216. |
[1] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[5] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[8] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[9] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[10] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[11] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[12] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[13] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[14] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[15] | 张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||