化工学报 ›› 2016, Vol. 67 ›› Issue (1): 240-247.DOI: 10.11949/j.issn.0438-1157.20151294
黄守莹, 王悦, 吕静, 赵玉军, 王胜平, 马新宾
收稿日期:
2015-08-12
修回日期:
2015-11-15
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
马新宾
基金资助:
国家自然科学基金项目(21325626,91434127);中国博士后科学基金项目(2014M560181,2015T80214)。
HUANG Shouying, WANG Yue, LÜ Jing, ZHAO Yujun, WANG Shengping, MA Xinbin
Received:
2015-08-12
Revised:
2015-11-15
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Natural Science Foundation of China (2140612, 91434127) and the Postdoctoral Science Foundation of China (2014M560181, 2015T80214).
摘要:
乙醇是一种重要的清洁能源,可以作为燃油替代品或者含氧添加剂使用,市场潜力巨大。由合成气出发,经二甲醚羰基化合成乙酸甲酯、乙酸甲酯加氢制乙醇是近年来备受关注的乙醇合成新工艺。该工艺选择性高、反应条件温和、催化剂价廉易得,且避免了乙醇-水共沸物的产生,节省了分离的能耗,是典型的绿色化学工艺。围绕这一工艺的两步核心反应(羰基化和加氢)的研究现状进行了综述,着重介绍了催化剂开发、反应机理方面的进展。该工艺路线的研究和推广,对促进我国能源多元化、清洁化发展有重要的意义。
中图分类号:
黄守莹, 王悦, 吕静, 赵玉军, 王胜平, 马新宾. 合成气经二甲醚/乙酸甲酯制无水乙醇的研究进展[J]. 化工学报, 2016, 67(1): 240-247.
HUANG Shouying, WANG Yue, LÜ Jing, ZHAO Yujun, WANG Shengping, MA Xinbin. Advances in indirect synthesis of ethanol from syngas via dimethyl ether/methyl acetate[J]. CIESC Journal, 2016, 67(1): 240-247.
[1] | SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol [J]. Energ. & Fuels, 2008, 22 (2): 814-839. |
[2] | SPIVEY J J, EGBEBI A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas [J]. Chem. Soc. Rev., 2007, 36 (9): 1514-1528. |
[3] | SUNLEY G J, WATSON D J. High productivity methanol carbonylation catalysis using iriduim the cativatm process for the manufacture of acetic acid [J]. Catal. Today, 2000, 58 (4): 293-307. |
[4] | CHEUNG P, BHAN A, SUNLEY G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites [J]. Angew. Chem. In. Ed., 2006, 45 (10): 1617-1620. |
[5] | CHEUNG P, BHAN A, SUNLEY G J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites [J]. J. Catal., 2007, 245 (1): 110-123. |
[6] | BHAN A, ALLIAN A D, SUNLEY G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls [J]. J. Am. Chem. Soc., 2007, 129 (16): 4919-4924. |
[7] | BHAN A, IGLESIA E. A link between reactivity and local structure in acid catalysis on zeolites [J]. Acc. Chem. Res., 2008, 41 (4): 559-567. |
[8] | BORONAT M, MARTINEZ S C, LAW D, et al. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO [J]. J. Am. Chem. Soc., 2008, 130 (48): 16316-16323. |
[9] | BORONAT M, MARTINEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite [J]. Phys. Chem. Chem. Phys., 2011, 13 (7): 2603-2612. |
[10] | LI B J, XU J, HAN B, et al. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy [J]. J. Phys. Chem. C, 2013, 117 (11): 5840-5847. |
[11] | RASMUSSEN D B, CHRISTENSEN J M, TEMEL B, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite [J]. Angew. Chem. In. Ed., 2015, 54 (25): 7261-7264. |
[12] | DITZEL E J, MORRIS G E, ROBERTS M S, et al. Carbonylation process with in situ regeneration of mordenite catalyst[P]: WO, 2009077745A1, 2009-06-25. |
[13] | 刘俊龙, 薛会福, 黄秀敏, 等. 预吸附吡啶增强二甲醚在丝光沸石上羰基化反应的稳定性 [J]. 催化学报, 2010, 31 (7): 729-738. DOI: 10.1016/S1872-2067(09)60081-4.LIU J L, XUE H F, HUANG X M, et al. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine [J]. Chin. J. Catal., 2010, 31 (7): 729-738. DOI: 10.1016/S1872-2067(09)60081-4. |
[14] | XUE H F, HUANG X M, ZHAN E S, et al. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation [J]. Catal. Commun., 2013, 37: 75-79. |
[15] | XUE H F, HUANG X M, DITZEL E, et al. Coking on micrometer-and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate [J]. Chin. J. Catal., 2013, 34 (8): 1496-1503. |
[16] | XUE H F, HUANG X M, DITZEL E, et al. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites [J]. Ind. Eng. Chem. Res., 2013, 52 (33): 11510-11515. |
[17] | LIU Y H, ZHAU N, XIAN H, et al. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether [J]. ACS Appl. Mater. Interfaces, 2015, 7 (16): 8398-8403. |
[18] | LIU J L, XUE H F, HUANG X M, et al. Dimethyl ether carbonylation to methyl acetate over HZSM-35 [J]. Catal. Lett., 2010, 139 (1/2): 33-37. |
[19] | LI X J, LIU X H, LIU S L, et al. Activity enhancement of ZSM-35 in dimethyl ether carbonylation reaction through alkaline modifications [J]. RSC Adv., 2013, 3 (37): 16549-116557. |
[20] | LI X J, XIE S J, XU L Y, et al. Catalyst and its preparation for carbonylation of dimethyl ether to methyl acetate: CN 201110247325.6[P]. 2013-03-06. |
[21] | WANG L Y, TIAN P, YUAN Y Y, et al. Seed-assisted synthesis of high silica ZSM-35 through interface-induced growth over MCM-49 seeds [J]. Micro. Meso. Mater., 2014, 196: 89-96. |
[22] | ANDERSSON S L T. Studies of ESCA of supported rhoduim catalysts related to activity for methanol carbonylation [J]. J. Catal., 1981, 71 (2): 233-243. |
[23] | BLASCO T, BORANAT M, CONCEPCION P, et al. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center [J]. Angew. Chem. In. Ed., 2007, 46 (21): 3938-3941. |
[24] | DEELEY J M S, DEITZEL E J, LAW D J, et al. Process for the carbonylation of dimethyl ehter: WO2008132438A1[P]. 2008-11-06. |
[25] | LAW D J, DITZEL E J. Process for the carbonylation of dimethyl ether: WO2008132450A1[P]. 2008-11-06. |
[26] | YANG G H, SAN X G, JIANG N, et al. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and cu/zno catalysts [J]. Catal. Today, 2011, 164 (1): 425-428. |
[27] | ZHANG X, LI Y P, QIU S B, et al. Synthesis of methyl acetate by dimethyl ether carbonylation over Cu/HMOR: effect of catalyst preparation method [J]. Chin. J. Chem. Phys., 2013, 26 (1): 77-82. |
[28] | ZHAN H M, HUANG S Y, Li Y, et al. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR [J]. Catal. Sci. Technol., 2015, 5 (9): 4378-4389. |
[29] | WANG S R, GUO W W, ZHU L J, et al. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange [J]. J. Phys. Chem. C, 2015, 119 (1): 524-533. |
[30] | ZHOU H, ZHU W L, SHI L, et al. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate [J]. Catal. Sci. Technol., 2015, 5 (3): 1961-1968. |
[31] | LUZGIN M V, KAZANSEV M S, WANG W, et al. Reactivity of methoxy species toward CO on Keggin 12-H3PW12O40: a study with solid state NMR [J]. J. Phys. Chem. C, 2009, 113 (45): 19639-19644. |
[32] | KAZANTSEV M S, LUZGIN M V, STEPANOV A G. Carbonylation of dimethyl ether with CO on solid 12-tungstophosphoric acid: in situ magic angle spinning NMR monitoring of the reaction kinetics [J]. J. Phys. Chem. C, 2013, 117 (21): 11168-11175. |
[33] | VOLKOVA G G, SALANOV. A N, KUSTOVA G N, et al. Heterogeneous catalysts for halide-free carbonylation of dimethyl ether [J]. Catal. Lett., 2002, 80 (3/4): 175-179. |
[34] | VOLKOVA G G, PLYASOVA L M, SHKURATOVA L N, et al. Solid superacids for halide-free carbonylation of dimethyl ether to methyl acetate[M]//Natural Gas Conversion Ⅶ. Amsterdam: Elsevier B.V., 2004: 403-408. |
[35] | LUZGIN M V, KAZANTSEV M S, VOLKOVA G G, et al. Carbonylation of dimethyl ether on solid Rh-promoted Cs-salt of Keggin 12-H3PW12O40: a solid-state NMR study of the reaction mechanism [J]. J. Catal., 2011, 277 (1): 72-79. |
[36] | LIU Y Y, MURATA K, INABA M, et al. Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation, and methyl acetate hydrogenolysis [J]. Fuel Process. Technol., 2013, 110: 206-213. |
[37] | 孙帆, 程双, 于小芳, 等. 醋酸乙酯加氢合成乙醇反应器的模型化 [J]. 化工学报, 2015, 66 (2): 561-566. DOI: 10.11949/j.issn. 0438-1157.20141217.SUN F, CHENG S, YU X F, et al. Modeling of ethyl acetate hydrogenation reactor [J]. CIESC Journal, 2015, 66 (2): 561-566. DOI: 10.11949/j.issn.0438-1157.20141217. |
[38] | GREY R A, PEZ G P, WALLO A. Anionic metal hydride catalysts (2): Application to the hydrogenation of ketones, aldehydes, carboxylic acid esters, and nitriles [J]. J. Am. Chem. Soc., 1981, 103 (25): 7536-7542. |
[39] | MIYAKE T, MAKINO T, TANIGUCHI S, et al. Alcohol synthesis by hydrogenation of fatty acid methyl esters on supported Ru-Sn and Rh-Sn catalysts [J]. Appl. Catal. A: Gen., 2009, 364 (1/2): 108-112. |
[40] | CLAUS P, LUCAS M, LUCKE B, et al. Selective hydrogenolysis of methyl and ethyl acetate in the gas phase on copper and supported group Ⅷ metal catalysts [J]. Appl. Catal. A: Gen., 1991, 79 (1): 1-18. |
[41] | LI W J, YE L M, LONG P, et al. Efficient Ru-Fe catalyzed selective hydrogenolysis of carboxylic acids to alcoholic chemicals [J]. RSC Adv., 2014, 4 (55): 29072-29082. |
[42] | SANTIAGO M A N, SANCHEZ C M A, CORTRIGHT R D, et al. Catalytic reduction of acetic acid, methyl acetate, and ethyl acetate over silica-supported copper [J]. J. Catal., 2000, 193 (1): 16-28. |
[43] | SAN X G, ZHANG Y, SHEN W J, et al. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst [J]. Energ. & Fuels, 2009, 23 (5): 2843-2844. |
[44] | WANG D, YANG G H, MA Q X, et al. Confinement effect of carbon nanotubes: copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate [J]. ACS Catal., 2012, 2 (9): 1958-1966. |
[45] | WANG D, SUN X Y, XING C, et al. Copper nanoparticles decorated inside or outside carbon nanotubes used for methyl acetate hydrogenation [J]. J. Nanosci. Nanotechno., 2013, 13 (2): 1274-1277. |
[46] | BRANDS D S, POELS E K, BLIEK A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts [J]. Appl. Catal. A: Gen., 1999, 184 (2): 279-289. |
[47] | WANG S R, GUO W W, WANG H X, et al. Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production [J]. New J. Chem., 2014, 38 (7): 2792-2800. |
[48] | 邱坤赞, 郭文文, 王海霞, 等. Cu/SiO2催化剂结构对乙酸甲酯加氢性能的影响 [J]. 物理化学学报, 2015, 31 (6): 1129-1136. DOI: 10.3866/PKU.WHXB201503272.QIU K Z, GUO W W, WANG H X, et al. Influence of catalyst structure on performance of Cu/SiO2 in hydrogenation of methyl acetate [J]. Acta Physico-Chimica Sinica, 2015, 31 (6): 1129-1136. DOI: 10.3866/PKU. WHXB201503272. |
[49] | WANG Y, SHEN Y L, ZHAO Y J, et al. Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds [J]. ACS Catal., 2015, 5 (10): 6200-6208. |
[50] | PISAREK M, LUKASZEWSKI M, WINIAREK P, et al. Influence of Cr addition to raney Ni catalyst on hydrogenation of isophorone [J]. Catal. Commun., 2008, 10 (2): 213-216. |
[51] | GUO P J, CHEN L F, YAN S R, et al. One-step hydrogenolysis of dimethyl maleate to tetrahydrofuran over chromium-modified Cu-B/-gamma-Al2O3 catalysts [J]. J Mol. Catal. A: Chem., 2006, 256 (1/2): 164-170. |
[52] | LEE J Y, LEE D W, LEE K Y, et al. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG [J]. Catal. Today, 2009, 146 (1/2): 260-264. |
[53] | 曹晓雁, 郑素贞, 吴周安, 等. Cu-Cr2O3催化剂上二氟乙酸甲酯催化加氢合成二氟乙醇 [J]. 化工学报, 2013, 64 (6): 2103-2108. DOI: 10.3969/j.issn.0438-1157.2013.06.02.CAO X Y, ZHENG S Z, WU Z A, et al. Cu-Cr2O3 catalysts for hydrogenation of methyl difluoroacetate to 2,2-difluoroethanol [J]. CIESC Journal, 2013, 64 (6): 2103-2108. DOI: 10.3969/j.issn. 0438-1157.2013.06.02. |
[54] | BRANDS D, POELS E, KRIEGER T, et al. The relation between reduction temperature and activity in copper catalysed ester hydrogenolysis and methanol synthesis [J]. Catal. Lett., 1996, 36 (3/4): 175-181. |
[55] | WANG D, YANG G H, MA Q X, et al. Facile solid-state synthesis of Cu-Zn-ocatalysts for novel ethanol synthesis from dimethyl ether (DME) and syngas (CO + H2) [J]. Fuel, 2013, 109: 54-60. |
[56] | Zhong K L, Wang X. The influence of different precipitants on the copper-based catalysts for hydrogenation of ethyl acetate to ethanol [J]. Int. J. Hydrogen Energ., 2014, 39 (21): 10951-10958. |
[57] | YUAN P, LIU Z Y, ZHANG W Q, et al. Cu-Zn/Al2O3 catalyst for the hydrogenation of esters to alcohols [J]. Chin. J. Catal., 2010, 31 (7): 769-775. |
[58] | ZHU Y M, SHI L. Zn promoted Cu-Al catalyst for hydrogenation of ethyl acetate to alcohol [J]. J. Ind. Eng. Chem., 2014, 20 (4): 2341-2347. |
[59] | LI X, SAN X, ZHANG Y, et al. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts [J]. Chemsuschem, 2010, 3 (10): 1192-1199. |
[60] | LU P, YANG G H, TANAKA Y, et al. Ethanol direct synthesis from dimethyl ether and syngas on the combination of noble metal impregnated zeolite with Cu/ZnO catalyst [J]. Catal. Today, 2014, 232: 22-26. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[9] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[10] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[11] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[12] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[13] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[14] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[15] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||