化工学报 ›› 2016, Vol. 67 ›› Issue (1): 248-257.DOI: 10.11949/j.issn.0438-1157.20151462
白璐, 张香平, 邓靓, 李梦蝶
收稿日期:
2015-09-16
修回日期:
2015-12-11
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
张香平
基金资助:
国家杰出青年科学基金项目(21425625)。
BAI Lu, ZHANG Xiangping, DENG Jing, LI Mengdie
Received:
2015-09-16
Revised:
2015-12-11
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Science Fund for Distinguished Young Scholars (21425625).
摘要:
离子液体由于具有不易挥发、结构可调、对CO2有良好的吸收性能等特点而成为当前CO2分离领域的研究热点,但因高黏度和高成本问题而限制了其工业化应用。将离子液体与气体分离膜材料结合,得到的新型分离膜材料兼具离子液体和膜的优势,成为当前离子液体研究领域的趋势之一。针对这一热点问题,综述了离子液体支撑液膜、聚离子液体膜和离子液体共混/杂化膜在CO2分离方面的研究现状和进展,讨论了离子液体结构和含量对膜分离性能、稳定性等的影响。相关研究表明,离子液体共混/杂化膜具有较高的分离性能和稳定性,是一种很有应用前景的CO2分离材料。提出该领域的重点发展方向,即开发新的功能化离子液体共混/杂化膜材料是解决高渗透通量与高稳定性之间矛盾、强化CO2分离性能的有效途径,深入研究离子液体共混/杂化膜的形成机制、气体在膜中的渗透行为以及CO2分离机理。
中图分类号:
白璐, 张香平, 邓靓, 李梦蝶. 离子液体膜材料分离二氧化碳的研究进展[J]. 化工学报, 2016, 67(1): 248-257.
BAI Lu, ZHANG Xiangping, DENG Jing, LI Mengdie. Ionic liquids based membranes for CO2 separation: a review[J]. CIESC Journal, 2016, 67(1): 248-257.
[1] | HAMMOND G P, AKWE S S O, WILLIAMS S. Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage [J]. Energy, 2011, 36 (2): 975-984. |
[2] | KENARSARI S D, YANG D, JIANG G, et al. Review of recent advances in carbon dioxide separation and capture [J]. RSC Advances, 2013, 3 (45): 22739-22773. |
[3] | SERVICE R F. Choosing a CO2 separation technology [J]. Science, 2004, 305 (5686): 963-963. |
[4] | BRUNETTI A, SCURA F, BARBIERI G, et al. Membrane technologies for CO2 separation [J]. Journal of Membrane Science, 2010, 359 (1/2): 115-125. |
[5] | ROBESON L M. The upper bound revisited [J]. Journal of Membrane Science, 2008, 320 (1/2): 390-400. |
[6] | ROGERS R D, SEDDON K R. Ionic liquids—solvents of the future? [J]. Science, 2003, 302 (5646): 792-793. |
[7] | ESHETU G G, ARMAND M, SCROSATI B, et al. Energy storage materials synthesized from ionic liquids [J]. Angewandte Chemie-international Edition, 2014, 53 (49): 13342-13359. |
[8] | ZHANG S, SUN J, ZHANG X, et al. Ionic liquid-based green processes for energy production [J]. Chemical Society Reviews, 2014, 43 (22): 7838-7869. |
[9] | ZHANG X, ZHANG X, DONG H, et al. Carbon capture with ionic liquids: overview and progress [J]. Energy & Environmental Science, 2012, 5 (5): 6668-6681. |
[10] | RAMDIN M, DE LOOS T W, VLUGT T J H. State-of-the-art of CO2 capture with ionic liquids [J]. Industrial & Engineering Chemistry Research, 2012, 51 (24): 8149-8177. |
[11] | BARA J E, CAMPER D E, GIN D L, et al. Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture [J]. Accounts of Chemical Research, 2010, 43 (1): 152-159. |
[12] | NOBLE R D, GIN D L. Perspective on ionic liquids and ionic liquid membranes [J]. Journal of Membrane Science, 2011, 369 (1/2): 1-4. |
[13] | SCOVAZZO P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research [J]. Journal of Membrane Science, 2009, 343 (1/2): 199-211. |
[14] | SCOVAZZO P, KIEFT J, FINAN D A, et al. Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes [J]. Journal of Membrane Science, 2004, 238 (1/2): 57-63. |
[15] | SCOVAZZO P, HAVARD D, MCSHEA M, et al. Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes [J]. Journal of Membrane Science, 2009, 327 (1/2): 41-48. |
[16] | JINDARATSAMEE P, SHIMOYAMA Y, MORIZAKI H, et al. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes [J]. Journal of Chemical Thermodynamics, 2011, 43 (3): 311-314. |
[17] | SANTOS E, ALBO J, IRABIEN A. Acetate based supported ionic liquid membranes (SILMs) for CO2 separation: influence of the temperature [J]. Journal of Membrane Science, 2014, 452: 277-283. |
[18] | BARA J E, GIN D L, NOBLE R D. Effect of anion on gas separation performance of polymer-room-temperature ionic liquid composite membranes [J]. Industrial & Engineering Chemistry Research, 2008, 47: 9919-9924. |
[19] | BARA J E, LESSMANN S, GABRIEL C J, et al. Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes [J]. Industrial & Engineering Chemistry Research, 2007, 46 (16): 5397-5404. |
[20] | MULDOON M J, AKI S N V K, ANDERSON J L, et al. Improving carbon dioxide solubility in ionic liquids [J]. Journal of Physical Chemistry B, 2007, 111 (30): 9001-9009. |
[21] | BARA J E, GABRIEL C J, CARLISLE T K, et al. Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes [J]. Chemical Engineering Journal, 2009, 147 (1): 43-50. |
[22] | MAHURIN S M, LEE J S, BAKER G A, et al. Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation [J]. Journal of Membrane Science, 2010, 353 (1/2): 177-183. |
[23] | CARLISLE T K, BARA J E, GABRIEL C J, et al. Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach [J]. Industrial & Engineering Chemistry Research, 2008, 47 (18): 7005-7012. |
[24] | BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid [J]. Journal of the American Chemical Society, 2002, 124 (6): 926-927. |
[25] | ZHANG J, JIA C, DONG H, et al. A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture [J]. Industrial & Engineering Chemistry Research, 2013, 52 (17): 5835-5841. |
[26] | MYERS C, PENNLINE H, LUEBKE D, et al. High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes [J]. Journal of Membrane Science, 2008, 322 (1): 28-31. |
[27] | KASAHARA S, KAMIO E, ISHIGAMI T, et al. Amino acid ionic liquid-based facilitated transport membranes for CO2 separation [J]. Chemical Communications, 2012, 48 (55): 6903-6905. |
[28] | HUANG K, ZHANG X M, LI Y X, et al. Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate-based ionic liquids [J]. Journal of Membrane Science, 2014, 471: 227-236. |
[29] | JIE X, CHAU J, OBUSKOVIC G, et al. Microporous ceramic tubule based and dendrimer-facilitated immobilized ionic liquid membrane for CO2 separation [J]. Industrial & Engineering Chemistry Research, 2015, 54 (42): 10401-10418. |
[30] | KASAHARA S, KAMIO E, ISHIGAMI T, et al. Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes [J]. Journal of Membrane Science, 2012, 415/416: 168-175. |
[31] | NEVES L A, CRESPO J G, COELHOSO I M. Gas permeation studies in supported ionic liquid membranes [J]. Journal of Membrane Science, 2010, 357 (1/2): 160-170. |
[32] | SHIMOYAMA Y, KOMURO S, JINDARATSAMEE P. Permeability of CO2 through ionic liquid membranes with water vapour at feed and permeate streams [J]. Journal of Chemical Thermodynamics, 2014, 69: 179-185. |
[33] | ZHAO W, HE G, ZHANG L, et al. Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2 [J]. Journal of Membrane Science, 2010, 350 (1/2): 279-285. |
[34] | HANIOKA S, MARUYAMA T, SOTANI T, et al. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane [J]. Journal of Membrane Science, 2008, 314 (1/2): 1-4. |
[35] | ZHAO W, HE G, NIE F, et al. Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation [J]. Journal of Membrane Science, 2012, 411: 73-80. |
[36] | KRULL F F, FRITZMANN C, MELIN T. Liquid membranes for gas/vapor separation [J]. Journal of Membrane Science, 2008, 325 (2): 509-519. |
[37] | UCHYTIL P, SCHAUER J, PETRYCHKOVYCH R, et al. Ionic liquid membranes for carbon dioxide-methane separation [J]. Journal of Membrane Science, 2011, 383 (1/2): 262-271. |
[38] | TANG J B, SUN W L, TANG H D, et al. Enhanced CO2 absorption of poly(ionic liquid)s [J]. Macromolecules, 2005, 38 (6): 2037-2039. |
[39] | TANG J B, TANG H D, SUN W L, et al. Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption [J]. Chemical Communications, 2005, (26): 3325-3327. |
[40] | BARA J E, HATAKEYAMA E S, GABRIEL C J, et al. Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes [J]. Journal of Membrane Science, 2008, 316 (1/2): 186-191. |
[41] | BARA J E, GABRIEL C J, LESSMANN S, et al. Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids [J]. Industrial & Engineering Chemistry Research, 2007, 46 (16): 5380-5386. |
[42] | BARA J E, GABRIEL C J, HATAKEYAMA E S, et al. Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents [J]. Journal of Membrane Science, 2008, 321 (1): 3-7. |
[43] | NGUYEN P T, WIESENAUER E F, GIN D L, et al. Effect of composition and nanostructure on CO2/N2 transport properties of supported alkyl-imidazolium block copolymer membranes [J]. Journal of Membrane Science, 2013, 430: 312-320. |
[44] | WIESENAUER E F, PHUC T N, NEWELL B S, et al. Imidazolium-containing, hydrophobic-ionic-hydrophilic abc triblock copolymers: synthesis, ordered phase-separation, and supported membrane fabrication [J]. Soft Matter, 2013, 9 (33): 7923-7927. |
[45] | LI P, COLEMAN M R. Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications [J]. European Polymer Journal, 2013, 49 (2): 482-491. |
[46] | CHI W S, HONG S U, JUNG B, et al. Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes [J]. Journal of Membrane Science, 2013, 443: 54-61. |
[47] | ANSALONI L, NYKAZA J R, YE Y, et al. Influence of water vapor on the gas permeability of polymerized ionic liquids membranes [J]. Journal of Membrane Science, 2015, 487: 199-208. |
[48] | BARA J E, HATAKEYAMA E S, GIN D L, et al. Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid [J]. Polymers for Advanced Technologies, 2008, 19: 1415-1420. |
[49] | BARA J E, NOBLE R D, GIN D L. Effect of “free” cation substituent on gas separation performance of polymer-room-temperature ionic liquid composite membranes [J]. Industrial & Engineering Chemistry Research, 2009, 48: 4607-4610. |
[50] | TOME L C, GOUVEIA A S L, FREIRE C S R, et al. Polymeric ionic liquid-based membranes: influence of polycation variation on gas transport and CO2 selectivity properties [J]. Journal of Membrane Science, 2015, 486: 40-48. |
[51] | ERDNI-GORYAEV E M, ALENT'EV A Y, BELOV N A, et al. Gas separation characteristics of new membrane materials based on poly(ethylene glycol)-crosslinked polymers and ionic liquids [J]. Petroleum Chemistry, 2012, 52 (7): 494-498. |
[52] | CHEN H Z, LI P, CHUNG T S. Pvdf/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas [J]. International Journal of Hydrogen Energy, 2012, 37 (16): 11796-11804. |
[53] | KANEHASHI S, KISHIDA M, KIDESAKI T, et al. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid [J]. Journal of Membrane Science, 2013, 430: 211-222. |
[54] | LIANG L, GAN Q, NANCARROW P. Composite ionic liquid and polymer membranes for gas separation at elevated temperatures [J]. Journal of Membrane Science, 2014, 450: 407-417. |
[55] | YOO S, WON J, KANG S W, et al. CO2 separation membranes using ionic liquids in a nafion matrix [J]. Journal of Membrane Science, 2010, 363 (1/2): 72-79. |
[56] | 赵薇. 离子液体膜CO2分离性能及稳定性研究[D]. 大连: 大连理工大学, 2012. |
ZHAO W. Stability and performance of ionic liquid membrane for CO2 separation[D]. Dalian: Dalian University of Technology, 2012. | |
[57] | 高思春. 离子液体-PVDF共混CO2分离复合膜的制备优化[D]. 大连: 大连理工大学, 2013. |
GAO S C. Preparation and optimization of ionic liquids-PVDF composite membranes for CO2 separation[D]. Dalian: Dalian University of Technology, 2013. | |
[58] | BERNARDO P, JANSEN J C, BAZZARELLI F, et al. Gas transport properties of pebax®/room temperature ionic liquid gel membranes [J]. Separation and Purification Technology, 2012, 97: 73-82. |
[59] | FRIESS K, JANSEN J C, BAZZARELLI F, et al. High ionic liquid content polymeric gel membranes: correlation of membrane structure with gas and vapour transport properties [J]. Journal of Membrane Science, 2012, 415: 801-809. |
[60] | HONG S U, PARK D, KO Y, et al. Polymer-ionic liquid gels for enhanced gas transport [J]. Chemical Communications, 2009, (46): 7227-7229. |
[61] | RABIEE H, GHADIMI A, MOHAMMADI T. Gas transport properties of reverse-selective poly (ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation [J]. Journal of Membrane Science, 2015, 476: 286-302. |
[62] | LEE S H, KIM B S, LEE E W, et al. The removal of acid gases from crude natural gas by using novel supported liquid membranes [J]. Desalination, 2006, 200 (1/2/3): 21-22. |
[63] | REZAKAZEMI M, AMOOGHIN A E, MONTAZER-RAHMATI M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions [J]. Progress In Polymer Science, 2014, 39 (5): 817-861. |
[64] | HUDIONO Y C, CARLISLE T K, BARA J E, et al. A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials [J]. Journal of Membrane Science, 2010, 350 (1/2): 117-123. |
[65] | HUDIONO Y C, CARLISLE T K, LAFRATE A L, et al. Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation [J]. Journal of Membrane Science, 2011, 370 (1/2): 141-148. |
[66] | MOHSHIM D F, MUKHTAR H, MAN Z. The effect of incorporating ionic liquid into polyethersulfone-SAPO34 based mixed matrix membrane on CO2 gas separation performance [J]. Separation and Purification Technology, 2014, 135: 252-258. |
[67] | SHINDO R, KISHIDA M, SAWA H, et al. Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid [J]. Journal of Membrane Science, 2014, 454: 330-338. |
[68] | HAO L, LI P, YANG T, et al. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture [J]. Journal of Membrane Science, 2013, 436: 221-231. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[4] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[5] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[9] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[12] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[15] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||