[1] |
HUANG J, CHEN Q, XU L H, et al. Problems and countermeasures in the application of constructed wetlands[J]. Environmental Science, 2013, 1(1):401-408.
|
[2] |
LONG C, KE S, HONG J, et al. Progress on oil-bearing wastewater treatment processes[J]. Industrial Water Treatment, 2007, 27(8):4-7.
|
[3] |
张帆, 李菁, 谭建华, 等. 吸附法处理重金属废水的研究进展[J]. 化工进展, 2013, 32(11):2749-2756. ZHANG F, LI J, TAN J H, et al. Advance of the treatment of heavy metal wastewater by adsorption[J]. Chemical Industry and Engineering Progress, 2013, 32(11):2749-2756.
|
[4] |
王建龙, 刘海洋. 放射性废水的膜处理技术研究进展[J]. 环境科学学报, 2013, 33(10):2639-2656. WANG J L, LIU H Y. Research advances in radioactive wastewater treatment using membrane processes[J]. Journal of Environmental Science, 2013, 33(10):2639-2656.
|
[5] |
LIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354:56-58.
|
[6] |
刘涛, 刘会娥, 贺琦,等. 多壁碳纳米管吸油能力和循环使用性探究[J]. 石油炼制与化工, 2014, 45(11):60-64. LIU T, LIU H E, HE Q, et al. Oil adsorption and reuse performances of multi-walled carbon nanotubes[J]. Petroleum Processing and Petrochemicals, 2014, 45(11):60-64.
|
[7] |
朱慧, 刘会娥, 黄剑坤, 等. 多壁碳纳米管吸附处理柴油废水的动力学特性[J]. 化工学报, 2015, 66(12):4865-4873. ZHU H, LIU H E, HUANG J K, et al. Kinetics for adsorption treatment of diesel oil waste water by multi-walled carbon nanotubes[J]. CIESC Journal, 2015, 66(12):4865-4873.
|
[8] |
HU H, ZHAO Z, GOGOTSI Y, et al. Compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption[J]. Environmental Science & Technology Letters, 2014, 1(3):214-220.
|
[9] |
HU H, ZHAO Z, WAN W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15):2219-2223.
|
[10] |
MUBARAK N M, SAHU J N, ABDULLAH E C, et al. Removal of heavy metals from wastewater using carbon nanotubes[J]. Separation & Purification Reviews, 2014, 43(4):311-338.
|
[11] |
REN X, CHEN C, NAGATSU M, et al. Carbon nanotubes as adsorbents in environmental pollution management:a review[J]. Chemical Engineering Journal, 2011, 170(2):395-410.
|
[12] |
SMITH B, WEPASNICK K, SCHROTE K E, et al. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes:a structure-property relationship[J]. Langmuir, 2009, 25(17):9767-9776.
|
[13] |
MATARREDONA O, RHOADS H, LI Z, et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS[J]. Journal of Physical Chemistry B, 2003, 107(48):13357-13367.
|
[14] |
MORRIS C A, ANDERSON M L, STROUD R M, et al. Silica sol as a nanoglue:flexible synthesis of composite aerogels[J]. Science, 1999, 284(5414):622-624.
|
[15] |
MAHLTIG B, BOTTCHER H. Modified silica sol coatings for water-repellent textiles[J]. Journal of Sol-gel Science and Technology, 2003, 27(1):43-52.
|
[16] |
WEI F, ZHANG Q, QIAN W Z, et al. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor:a multiscale space-time analysis[J]. Powder Technology, 2008, 183(1):10-20.
|
[17] |
RAWAT D S, CALBI M M, MIGONE A D. Equilibration time:kinetics of gas adsorption on closed-and open-ended single-walled carbon nanotubes[J]. Journal of Physical Chemistry C, 2007, 111(35):12980-12986.
|
[18] |
关诚灏, 金劭, 王涛,等. 酸处理对碳纳米管纹理结构的影响[J]. 化工学报, 2013, 64(S1):182-187. GUAN C H, JIN S, WANG T, et al. Influence of acid treating on texture and structure of carbon nanotubes[J]. CIESC Journal, 2013, 64(S1):182-187.
|
[19] |
FAN Z, YAN J, NING G, et al. Oil sorption and recovery by using vertically aligned carbon nanotubes[J]. Carbon, 2010, 48(14):4197-4200.
|
[20] |
JAIN A, XU C, JAYARAMAN S, et al. Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications[J]. Microporous and Mesoporous Materials, 2015, 218:55-61.
|
[21] |
韩伟, 贾玉心, 熊国兴, 等. 介孔-微孔复合材料的水热稳定性及其催化裂化性能[J]. 催化学报, 2011, 32(3):418-427. HAN W, JIA Y X, XIONG G X, et al. Hydrothermal stability of meso-microporous composites and their catalytic cracking performance[J]. Chinese Journal of Catalysis, 2011, 32(3):418-427.
|
[22] |
AND M K, JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chemistry of Materials, 2001, 13:3169-3183.
|
[23] |
WU F C, TSENG R L, JUANG R S, et al. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics[J]. Chemical Engineering Journal, 2009, 153(1):1-8.
|
[24] |
ALI I. New generation adsorbents for water treatment[J]. Chemical Reviews, 2012, 112(10):5073-5091.
|
[25] |
HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
|
[26] |
PAN B, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(24):9005-9013.
|
[27] |
KABIRI S, TRAN D N H, ALTALHI T, et al. Outstanding adsorption performance of graphene-carbon nanotube aerogels for continuous oil removal[J]. Carbon, 2014, 80(1):523-533.
|
[28] |
NOLLET H, ROELS M, LUTGEN P, et al. Removal of PCBs from wastewater using fly ash[J]. Chemosphere, 2003, 53(6):655-665.
|
[29] |
YAN H, YANG H, LI A, et al. pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water[J]. Chemical Engineering Journal, 2016, 284:1397-1405.
|
[30] |
HUANG G, WANG W, MI X, et al. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions[J]. Carbon, 2012, 50(13):4856-4864.
|
[31] |
TEMKIN M I, PYZHEV V. Kinetic of ammonia synthesis on promoted iron catalysts[J]. Acta Physiochim URSS, 1940, 12(3):327-356.
|
[32] |
HOKKANEN S, BHATNAGAR A, REPO E, et al. Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(Ⅵ) from aqueous solution[J]. Chemical Engineering Journal, 2016, 283:445-452.
|