化工学报 ›› 2017, Vol. 68 ›› Issue (1): 23-36.DOI: 10.11949/j.issn.0438-1157.20161328
杨悦锁1,2, 王园园1, 宋晓明1, 于彤2, 杨新瑶1
收稿日期:
2016-09-21
修回日期:
2016-10-29
出版日期:
2017-01-05
发布日期:
2017-01-05
通讯作者:
王园园
基金资助:
国家自然科学基金项目(41272255,41472237,41471409);辽宁省创新团队项目(LT201502);沈阳市科技计划项目(F14-133-9-00,F15-113-9-00)。
YANG Yuesuo1,2, WANG Yuanyuan1, SONG Xiaoming1, YU Tong2, YANG Xinyao1
Received:
2016-09-21
Revised:
2016-10-29
Online:
2017-01-05
Published:
2017-01-05
Contact:
10.11949/j.issn.0438-1157.20161328
Supported by:
supported by the National Natural Science Foundation of China (41272255, 41472237, 41471409).
摘要:
天然胶体在土壤和地下水环境中广泛存在。由于胶体不仅具有粒径小、比表面积大、表面带有电荷等基本特点,而且具有独特的双电层结构和丰富的表面官能团,这些特点使得胶体成为地下环境中最为活跃的组分,并对土壤与地下水中污染物的迁移产生重要影响。近年来,土壤与地下水环境中的胶体及其对污染物的促进迁移作用受到越来越多研究者的关注。综述了地下环境中的胶体来源、可移动胶体的释放与沉积、胶体自身的特征与环境行为以及胶体对不同污染物的促进迁移作用,分析了各种环境因子对胶体-污染物共迁移的影响。在此基础上,对地下环境中胶体与污染物共迁移的过程与机理等尚需深入研究的关键科学问题提出了研究展望。
中图分类号:
杨悦锁, 王园园, 宋晓明, 于彤, 杨新瑶. 土壤和地下水环境中胶体与污染物共迁移研究进展[J]. 化工学报, 2017, 68(1): 23-36.
YANG Yuesuo, WANG Yuanyuan, SONG Xiaoming, YU Tong, YANG Xinyao. Co-transport of colloids and facilitated contaminants in subsurface environment[J]. CIESC Journal, 2017, 68(1): 23-36.
[1] | VIGNATI D, DOMINIK J. The role of coarse colloids as a carrier phase for trace metals in riverine systems[J]. Aquatic Science, 2003, 65(2):129-142. |
[2] | 商书波. 包气带中的土壤可移动胶体及对重金属迁移影响的研究[D]. 长春:吉林大学, 2008. SHANG S B. Study movable soil colloids in vadose zone and impact of transport of heavy metals[D]. Changchun:Jilin University, 2008. |
[3] | 刘冠男, 刘新会. 土壤胶体对重金属迁移行为的影响[J]. 环境化学, 2013, 32(7):1307-1316. LIU G N, LIU X H. A review on the impact of soil colloids on heavy metal transport[J]. Environmental Chemistry, 2013, 32(7):1308-1315. |
[4] | ZHANG W, TANG X, WEISBROD N, et al. A review of colloid transport in fractured rocks[J]. J. Mt. Sci., 2012, 9:770-787. |
[5] | 孙慧敏, 殷宪强, 王益权. pH对粘土矿物胶体在饱和多孔介质中迁移的影响[J]. 环境科学学报, 2012, 32(2):419-424. SUN H M, YIN X Q, WANG Y Q. The effect of pH on the transport of clay mineral colloid in saturated porous media[J]. Journal of Environmental Science, 2012, 32(2):419-424. |
[6] | 肖汉宁, 袁琳, 罗要菊. Ca2+引入方式及用量对蒙脱石的膨胀容及阳离子交换量的影响[J]. 长沙理工大学学报(自然科学版), 2007, 4(3):89-92. XIAO H N, YUAN L, LUO Y J. Influence of introducing method and amount of Ca2+ on the swelling capacity and cation exchange capacity of montmorillonite[J]. Journal of Changsha University of Science and Technology(Natural Science), 2007, 4(3):89-92. |
[7] | 陆现彩, 伊琳, 赵连泽, 等. 常见层状硅酸盐矿物的表面特征[J]. 碳酸盐学报, 2003, 31(1):60-65. LU X C, YI L, ZHAO L Z, et al. Surface characteristics of general phyllosilicate minerals[J]. Journal of the Chinese Ceramic Society, 2003, 31(1):60-65. |
[8] | 李国胜, 梁金生, 丁燕, 等. 海泡石矿物材料的显微结构对其吸湿性能的影响[J]. 硅酸盐学报, 2005, 33(5):604-608. LI G S, LIANG J S, DING Y, et al. Influence of microstructure of sepiolite on its water vapor adsorption properties[J]. Journal of the Chinese Ceramic Society, 2005, 33(5):604-608. |
[9] | 燕守勋, 曲永新, 韩胜杰. 蒙皂石含量与膨胀土膨胀势指标相关关系研究[J]. 工程地质学报, 2004, 12(1):74-82. YAN S X, QU Y X, HAN S J. A study on the relationship between smectite content and swell potential indices[J]. Journal of Engineering Geology, 2004, 12(1):74-82. |
[10] | ZHU Y J, MA L Q, DONG X L, et al. Ionic strength reduction and flow interruption enhanced colloid-facilitated Hg transport in contaminated soils[J]. Journal of Hazardous Materials, 2014, 264:286-292. |
[11] | 龚剑, 黄文, 杨娟. 珠江河流胶体中的典型内分泌干扰物[J]. 中国环境科学, 2015, 35(2):617-623. GONG J, HUANG W, YANG J. Pearl River colloid typical endocrine disruptors[J]. China Environmental Science, 2015, 35(2):617-623. |
[12] | SAITO T, SUZUKI Y, MIZUNO T. Size and elemental analyses of nano colloids in deep granitic groundwater:implications for transport of trace elements[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 435:48-55. |
[13] | AOSAI D, YUHEI Y, TAKASHI M, et al. Size and composition analyses of colloids in deep granitic groundwater using microfiltration/ultrafiltration while maintaining in situ hydrochemical conditions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 461:279-286. |
[14] | 唐翾, 段丹丹, 黄文, 等. 珠江下游不同水体中金属元素在颗粒相和胶体相中的分布和分配[J]. 生态环境学报, 2015, 24(12):2017-2021. TANG X, DUAN D D, HUANG W, et al. Distribution and partitioning of heavy metals in particulate and colloid phases in different kinds of water in the downstream Pearl River[J]. Ecology and Environmental Sciences, 2015, 24(12):2017-2021. |
[15] | HASSELLÖV M, BUESSELER K O, PIKE S M, et al. Application of cross-flow ultrafiltration for the determination of colloidal abundances in suboxic ferrous-rich ground waters[J]. Science of the Total Environment, 2007, 372:636-644. |
[16] | GECKEIS H, TH N M, BOUBY M, et al. Aquatic colloids relevant to radionuclide migration:characterization by size fractionation and ICP-mass spectrometric detection[J]. Colloids Surfaces A:Physiochem. Eng. Asp., 2003, 217:101-108. |
[17] | XU S P, LIAO Q, JAMES E S. Straining of nonspherical colloids in saturated porous media[J]. Environmental Science and Technology, 2008, 42:3349-3355. |
[18] | LIU Y Q, HYEOK C, DIONYSIOS D, et al. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron[J]. Chem. Mater., 2005, 17:5315-5322. |
[19] | LIN Y H, TSENG H H, WEY M Y, et al. Characteristics, morphology, and stabilization mechanism of PAA250K-stabilized bimetal nanoparticles[J]. Colloids and Surfaces A:Physicochem. Eng. Asp., 2009, 349:137-144. |
[20] | JAMEST N, PAULG T, VAISHNAVI S, et al. Characterization and properties of metallic iron nanoparticles:spectroscopy, electrochemistry, and kinetics[J]. Environ. Sci. Technol., 2005, 39:1221-1230. |
[21] | ALEXIS A P, XU S P. Colloid straining within saturated heterogeneous porous media[J]. Water Research, 2011, 45:1796-1806. |
[22] | SAMUEL C N, IRENE M C. Magnetic nanoparticles:essential factors for sustainable environmental applications[J]. Water Research, 2013, 47:2613-2632. |
[23] | JACOB D, COREY J L, SHARON L W. Effects of solution chemistry on the transport of graphene oxide in saturated porous media[J]. Environmental Science & Technology, 2013, 47:4255-4261. |
[24] | AOSAI D, YUHEI Y, TAKASHI M. Size and composition analyses of colloids in deep granitic groundwater using microfiltration/ultrafiltration while maintaining in situ hydrochemical conditions[J]. Colloids and Surfaces A:Physicochem. Eng. Asp., 2014, 461:279-286. |
[25] | BEN-MOSHE T, DROR I, BERKOWITZ B. Transport of metal oxide nanoparticles in saturated porous media[J]. Chemospher, 2010, 81(3):387-393. |
[26] | TAO C, JAMES E S. Mobilization and transport of in situ colloids during drainage and imbibition of partially saturated sediments[J]. Water Resources Research, 2009, 45(11):1-14. |
[27] | MAJDALANI S, MICHEL E, DI-PIETRO L, et al. Effects of wetting and drying cycles on in situ soil particle mobilization[J]. Europen Journal of Soil Science, 2008, 59:147-155. |
[28] | SANDRA G, SUSANNA W, MATS J. Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength[J]. Applied Clay Science, 2009, 43:21-26. |
[29] | SAEED T, SCOTT A B, JOANNE L V, et al. Colloid release and clogging in porous media:effects of solution ionic strength and flow velocity[J]. Journal of Contaminant Hydrology, 2015, 181:161-171. |
[30] | 郭青海, 王焰新, 郭华明. 地下水系统中胶体的形成机理及其对污染物迁移的影响[J]. 地质科技情报, 2001, 20(3):69-74. GUO Q H, WANG Y X, GUO H M. Mobilization mechanism and the effect on contaminants movement of colloids in groundwater[J]. Geological Science and Technology Information, 2001, 20(3):69-74. |
[31] | LIU Q, LAZOUSKAYA V, HE Q, et al. Effect of particle shape on colloid retention and release in saturated porous media[J]. Journal of Environmental Quality, 2010, 39(2):500-508. |
[32] | LI X, ZHANG P, LIN C L, et al. Role of hydrodynamic drag on microsphere deposition and reentrainment in porous media under unfavorable conditions[J]. Environmental Science & Technology, 2005, 39:4012-4020. |
[33] | LI X Q, LIN C L, MILLER J D, et al. Role of grain-tograin contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition[J]. Environmental Science & Technology, 2006, 40:3769-3774. |
[34] | TUFENKJI N, MILLER G F, RYAN J N, et al. Transport of Cryptosporidium oocysts in porous media:role of straining and physicochemical filtration[J]. Environmental Science & Technology, 2004, 38:5932-5938. |
[35] | BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Modeling colloid attachment, straining, and exclusion in saturated porous media[J]. Environmental Science & Technology, 2003, 37:2242-2250. |
[36] | KELLER A A, AUSET M. A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions[J]. Advances in Water Resources, 2007, 30:1392-1407. |
[37] | 陈星欣, 白冰, 于涛, 等. 粒径和渗流速度对多孔介质中悬浮颗粒迁移和沉积特性的耦合影响[J]. 岩石力学与工程学报, 2013, 32(1):2840-2845. CHEN X X, BAI B, YU T, et al. Coupled effects of particle size and flow rate on characteristics of particle transportation and deposition in porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1):2840-2845. |
[38] | SHANG J, LIU, WANG Z. Transport and retention of engineered nanoporous particles in porous media:effects of concentration and flow dynamics[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 417:89-98. |
[39] | 贾晓玉, 李海明, 王博, 等. 不同酸碱条件下胶体迁移对含水介质渗透性的影响[J]. 环境科学与技术, 2009, 32(5):45-47. JIA X Y, LI H M, WANG B, et al. Effect of colloid transport on porous medium permeability in different acidic and basic environment[J]. Environmental Science & Technology, 2009, 32(5):45-47. |
[40] | 吕俊佳, 许端平, 李发生. 不同环境因子对黑土胶体在饱和多孔介质中迁移特性的影响[J]. 环境科学研究, 2012, 25(8):875-881. LÜ J J, XU D P, LI F S. Effects of different environmental factors on the transportation of black soil colloid in saturated porous media[J]. Research of Environmental Sciences, 2012, 25(8):875-881. |
[41] | GEORGE R A, HEILEEN H K, JOSEPH N R. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids[J]. Environmental Science & Technology, 2011, 45:3196-3201. |
[42] | WANG Q, TAO C, WU Y. Influence of mineral colloids and humic substances on uranium(Ⅵ) transport in water-saturated geologic porous media[J]. Journal of Contaminant Hydrology, 2014, 170:76-85. |
[43] | YANG X Y, YIN Z Y, CHEN F M, et al. Organic matter induced mobilization of polymer-coated silver nanoparticles from water-saturated sand[J]. Science of the Total Environment, 2015, 529:182-190. |
[44] | YANG X Y, ZHANG Y M, CHEN F M, et al. Interplay of natural organic matter with flow rate and particle size on colloid transport:experimentation, visualization, and modeling[J]. Environmental Science & Technology, 2015, 49:13385-13393. |
[45] | YANG X Y, LIANG D X, DENG S H. Quantifying the influence of EDTA on polymer nanoparticle deposition and retention in an iron-oxide-coated sand column[J]. Journal of Environmental Monitoring, 2012, 14:2392-2398. |
[46] | YANG X Y, FLYNN R, VON DER KAMMER F, et al. Modeling colloid deposition on a protein layer adsorbed to iron-oxide-coated sand[J]. Journal of Contaminant Hydrology, 2012, 142/143:50-62. |
[47] | TAO C, JAMES E S. Colloid-facilitated transport of cesium in vadose-zone sediments:the importance of flow transients[J]. Environmental Science & Technology, 2010, 44:7443-7449. |
[48] | 李海明, 赵雪, 马斌, 等. 不同钠吸附比含水介质中胶体迁移-沉积动力学[J]. 水文地质工程地质, 2011, 38(6):90-94. LI H M, ZHAO X, MA B, et al. Dynamics of colloid transport-deposition in water-bearing media under different environments of sodium absorption ratios[J]. Hydrogeology and Engineering Geology, 2011, 38(6):90-94. |
[49] | BRADFORD S A, TORKZABAN S. Colloid transport and retention in unsaturated porous media:a review of interface-collector and pore-scale processes and models[J]. Vadose Zone Journal, 2008, 7(2):667-681. |
[50] | FLURY M, QIU H. Modeling colloid-facilitated contaminant transport in the vadose zone[J]. Vadose Zone Journal, 2008, 7(2):682-697. |
[51] | DENOVIO N M, SAIERS J E, RYAN J N. Colloid movement in unsaturated porous media:recent advances and future directions[J]. Vadose Zone Journal, 2004, 3(3):338-351. |
[52] | SAEED T, SCOTT A B, MARTINUS T G, et al. Colloid transport in unsaturated porous media:the role of water content and ionic strength on particle straining[J]. Journal of Contaminant Hydrology, 2008, 96:113-127. |
[53] | SURACHET A, MARKUS F, JAMES B H, et al. Colloid mobilization and transport during capillary fringe fluctuations[J]. Environmental Science & Technology, 2014, 48:7272-7279. |
[54] | YAN C X, NIE M H, YI Y. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters[J]. Journal of Hazardous Materials, 2015, 299:241-248. |
[55] | SEETHA N, MOHAN K M S, MAJID H S. Modeling the co-transport of viruses and colloids in unsaturated porous media[J]. Journal of Contaminant Hydrology, 2015, 181:82-101. |
[56] | 罗文倩, 魏世强. 镉在针铁矿、针铁矿腐殖酸复合胶体中吸附解吸行为比较研究[J]. 农业环境科学学报, 2009, 28(5):897-902. LUO W Q, WEI S Q. Adsorption and desorption behaviors of cadmium on/from goethite and its compound colloid with humic acids[J]. Journal of Agricultural-Environment Science, 2009, 28(5):897-902. |
[57] | HARDILJEET K B, MEERA J, DENIS M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials, 2011, 186(1):458-465. |
[58] | MCBRIDE M B. Cadmium uptake by crops estimated from soil total Cd and pH[J]. Soil Science, 2002, 167:62-67. |
[59] | 杨金燕, 杨肖娥, 何振立, 等. 土壤中铅的吸附-解吸行为研究进展[J]. 生态环境, 2005, 14(1):102-107. YANG J Y, YANG X E, HE Z L, et al. Advance in the studies of Pb adsorption and desorption in soils[J]. Ecology and Environment, 2005, 14(1):102-107. |
[60] | 何宏平, 郭九皋, 朱建喜, 等. 蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究[J]. 岩石矿物学杂志, 2001, 20(4):573-578. HE H P, GUO J G, ZHU J X, et al. Experimental study of the capacity of smectite, kaolinite, illite for heavy metals[J]. Rock and Mineral Magazine, 2001, 20(4):573-578. |
[61] | 杨亚提, 张一平. 离子强度对恒电荷土壤胶体吸Cu2+和Pb2+的影响[J]. 环境化学, 2001, 20(6):566-571. YANG Y T, ZHANG Y P. The effects of ionic strength for adsorption of Cu2+ and Pb2+ on constant charge soil colloids[J]. Environmental Chemistry, 2001, 20(6):566-571. |
[62] | 雒国忠, 姜先桥, 尚林群, 等. 典型有机物在包气带土和地下水中迁移的影响因素研究[J]. 中国地质调查, 2015, 2(3):14-21. LUO G Z, JIANG X Q, SHANG L Q, et al. Influencing factors on the transport of typical organics in aeration zone and groundwater zone[J]. China Geological Survey, 2015, 2(3):14-21. |
[63] | 彭伟, 方振东, 谯华, 等. 环境因子对胡敏酸吸附3,3,4,4-四氯联苯的影响[J]. 环境科学与技术, 2015, 38(11):92-96. PENG W, FANG Z D, QIAO H, et al. Effect of environmental factors on 3,3',4,4'-tetrachlorobiphenyl adsorption onto humic acid[J]. Environmental Science & Technology, 2015, 38(11):92-96. |
[64] | 张展适, 周文斌, 钱天伟, 等. 镎、钚、锶在黄土地下水中地球化学行为的模拟研究[J]. 辐射防护, 2003, 23(6):355-360. ZHANG Z S, ZHOU W B, QIAN T W, et al. Modelling of geochemical behavior of neptunium, plutonium and strontium in a loess aquifer[J]. Radiation Protection, 2003, 23(6):355-360. |
[65] | 刘艳, 李成邦, 王东文, 等. 地下水环境中钚形态分布研究进展[J]. 环境科学与技术, 2016, 39(1):66-73. LIU Y, LI C B, WANG D W, et al. Recent progress of the studies on plutonium speciation in the groundwater[J]. Environmental Science & Technology, 2016, 39(1):66-73. |
[66] | SANJAY K M, JAMES E S, JOSEPH N R. Colloid-facilitated mobilization of metals by freeze-thaw cycles[J]. Environmental Science & Technology, 2014, 48:977-984. |
[67] | SANJAY K M, JAMES E S, JOSEPH N R. Colloid mobilization in a fractured soil during dry-wet cycles:role of drying duration and flow path permeability[J]. Environmental Science & Technology, 2015, 49:9100-9106. |
[68] | TIMOTHY M D, HAKIM B, STUART D W, et al. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids[J]. Journal of Environmental Radioactivity, 2015, 148:170-182. |
[69] | NED B T, JOSEPH N R, JAMES E S. Effect of desorption kinetics on colloid-facilitated transport of contaminants:cesium, strontium, and illite colloids[J]. Water Resources Research, 2006, 42:1-17. |
[70] | 张琪, 王清良, 李乾, 等. Al(OH)3胶体的制备及其对铀的吸附机理[J]. 化工学报, 2014, 65(4):1279-1286. ZHANG Q, WANG Q L, LI Q, et al. Preparation of aluminum hydroxide colloid and its adsorption mechanism for uranium(Ⅵ)[J]. CIESC Journal, 2014, 65(4):1279-1286. |
[71] | 付海曼, 贾黎明. 土壤对氮、磷吸附/解吸附特性研究进展[J]. 中国农业通报, 2009, 25(21):198-203. FU H M, JIA L M. Study progress of nitrogen and phosphate adsorption & desorption in soils[J]. Chinese Agricultural Science Bulletin, 2009, 25(21):198-203. |
[72] | 孙小静, 秦伯强, 朱广伟, 等. 持续水动力作用下湖泊底泥胶体态氮、磷的释放[J]. 中国环境科学, 2007, 28(6):1223-1228. SUN X J, QIN B Q, ZHU G W, et al. Release of colloidal N and P from sediment of lake caused by continuing hydrodynamic disturbance[J]. China Environmental Science, 2007, 28(6):1223-1228. |
[73] | 孙小静, 秦伯强, 朱广伟. 蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放[J]. 中国环境科学, 2007, 27(3):341-345. SUN X J, QIN B Q, ZHU G W. Release of colloidal phosphorus, nitrogen and organic carbon in the course of dying and decomposing of cyanobacteria[J]. China Environmental Science, 2007, 27(3):341-345. |
[74] | ARASH M, TIMOTHY R G. Modeling colloid-facilitated transport of multi-species contaminants in unsaturated porous media[J]. Journal of Contaminant Hydrology, 2007, 92:162-183. |
[75] | LI Z L, ZHOU L X. Cadmium transport mediated by soil colloid and dissolved organic matter:a field study[J]. Journal of Environmental Sciences, 2010, 22(1):106-115. |
[76] | DANIEL G. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:mathematical modeling and laboratory column experiments[J]. Environmental Science & Technology, 2005, 39:6378-6386. |
[77] | JOSEPH N R, MENACHEM E. Colloid mobilization and transport in groundwater[J]. Colloids and Surfaces A,1996, 107:1-56. |
[78] | TANG X Y, WEISBROD N. Colloid-facilitated transport of lead in natural discrete fractures[J]. Environmental Pollution, 2009, 157:2266-2274. |
[79] | TANG X Y, WEISBROD N. Dissolved and colloidal transport of cesium in natural discrete fractures[J]. Journal of Environmental Quality, 2010, 39:1066-1076. |
[80] | 刘庆玲, 徐绍辉. 地下环境中胶体促使下的污染物迁移研究进展[J]. 土壤, 2015, 37(2):129-135. LIU Q L, XU S H. Colloid-facilitated transport of contaminants in subsurface environment[J]. Soil, 2015, 37(2):129-135. |
[81] | WANG Q, TAO C, YANG W. Influence of mineral colloids and humic substances on uranium(Ⅵ) transport in water-saturated geologic porous media[J]. Journal of Contaminant Hydrology, 2014, 170:76-85. |
[82] | UTSUNOMIYA S, KERSTING A B, EWING R C. Groundwater nanoparticles in the far-field at the Nevada Test Site:mechanism for radionuclide transport[J]. Environment Science and Technology, 2009, 45(5):1293-1298. |
[83] | MISSANA T, ALONSO U, GARCIA-GUTIERREZ M, et al. Role of bentonite colloids on europium and plutonium migration in a granite fracture[J]. Applied Geochemistry, 2008, 23(6):1484-1497. |
[84] | KUNZE P, SEHER H, HAUSER W, et al. The influence of colloid formation in a granite groundwater bentonite porewater mixing zone on radionuclide speciation[J]. Journal of Contaminant Hydrology, 2008, 102:263-272. |
[85] | GUSTAVO J V, CLEVELAND J D, AROKIASAMY J F. Bioreduction of U(Ⅵ)-phthalate to a polymeric U(Ⅳ)-phthalate colloid[J]. Inorganic Chemistry, 2009, 48(19):9485-9490. |
[86] | 肖广全, 温华, 魏世强. 三峡水库消落区土壤胶体对Cd在土壤中迁移的影响[J]. 水土保持学报, 2007, 21(4):16-19. XIAO G Q, WEN H, WEI S Q. Effect of soil colloids on migration of cadmium in soils from water level fluctuating zone of three gorges reservoir[J]. Journal of Soil and Water Conservation, 2007, 21(4):16-19. |
[87] | YIN X Q, GAO B, LENA Q M, et al. Colloid-facilitated Pb transport in two shooting-range soils in Florida[J]. Journal of Hazardous Materials, 2010, 177:620-625. |
[88] | INTAE K, GUEBUEM K. Role of colloids in the discharge of trace elements and rare earth elements from coastal groundwater to the ocean[J]. Marine Chemistry, 2015, 176:126-132. |
[89] | SANTANU M, BIBHASH N, SIMITA S, et al. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India:the role of organic and inorganic colloids[J]. Science of the Total Environment, 2014, 468/469:804-812. |
[90] | STÉPHANE K N, PETER G, OLAF A C. Effect of natural particles on the transport of lindane in saturated porous media:laboratory experiments and model-based analysis[J]. Journal of Contaminant Hydrology, 2013, 149:13-26. |
[91] | LI F B, WANG X G, LIU C S, et al. Reductive transformation of pentachlorophenol on the interface of subtropical soil colloids and water[J]. Geoderma, 2008, 148:70-78. |
[92] | ZOU Y H, WEI Z. Modeling manure colloid-facilitated transport of the weakly hydrophobic antibiotic florfenicol in saturated soil columns[J]. Environmental Science & Technology, 2013, 47:5185-5192. |
[93] | SHEN C Y, WANG H, VOLHA L, et al. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media[J]. Journal of Contaminant Hydrology, 2015, 177/178:18-29. |
[94] | 王博, 李海明, 贾晓玉, 等. 天然胶体对含水介质中氨氮迁移的影响[J]. 环境科学与技术, 2009, 32(7):18-20. WANG B, LI H M, JIA X Y, et al. Effect of natural colloid on ammonia nitrogen transport in water-bearing media[J]. Environmental Science & Technology, 2009, 32(7):18-20. |
[95] | ALLISON R V, KEN J L, YUJI A. Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols[J]. Geoderma, 2013, 206:101-111. |
[96] | TANG X Y, NOAM W. Colloid-facilitated transport of lead in natural discrete fractures[J]. Environmental Pollution, 2009, 157:2266-2274. |
[97] | RAKKREAT W, SRILERT C, SAY K O. Effects of kaolinite colloids on Cd2+ transport through saturated sand under varying ionic strength conditions:column experiments and modeling approaches[J]. Journal of Contaminant Hydrology, 2015, 182:146-156. |
[98] | MISHUROV M, YAKIREVICH A, WEISBROD N. Colloid transport in a heterogeneous partially saturated sand column[J]. Environmental Science & Technology, 2008, 42:1066-1071. |
[99] | ZHANG W, TANG X Y, NOAM W, et al. A coupled field study of subsurface fracture flow and colloid transport[J]. Journal of Hydrology, 2015, 524:476-488. |
[100] | 温小乐, 夏立江, 徐亚萍, 等. 生活垃圾渗滤液对堆填区周边土壤铵态氮吸附能力的影响[J]. 农业环境科学学报, 2004, 23(3):503-507. WEN X L, XIA L J, XU Y P, et al. Effects of leachate on ammonia-nitrogen adsorption ability in soil nearby a municipal waste landfill[J]. Journal of Agriculture Environment Science, 2004, 23(3):503-507. |
[101] | YU Y, JAMES E S, XU N, et al. Impact of natural organic matter on uranium transport through saturated geologic materials:from molecular to column scale[J]. Environmental Science & Technology, 2012, 46:5931-5938. |
[102] | YU Y, JAMES E S, BARNETT M O. Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions[J]. Environmental Science & Technology, 2013, 47:2661-2669. |
[103] | TAO C, JAMES E S. Effects of dissolved organic matter on the co-transport of mineral colloids and sportive contaminants[J]. Journal of Contaminant Hydrology, 2015, 177/178:148-157. |
[104] | 陈蕾, 王郑, 曹世玮. 畜禽养殖排放的雌激素对周边水体环境的影响[J]. 生态环境学报, 2014, 23(2):359-364. CHEN L, WANG Z, CAO S W. Effects of estrogens on water environment by livestock excretion[J]. Journal of Ecological Environment, 2014, 23(2):359-364. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[5] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[8] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[9] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[10] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[11] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[12] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[13] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[14] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[15] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||