化工学报 ›› 2017, Vol. 68 ›› Issue (3): 831-840.DOI: 10.11949/j.issn.0438-1157.20161437
杨西萍1, 刘煌2, 李赟2
收稿日期:
2016-10-11
修回日期:
2016-12-08
出版日期:
2017-03-05
发布日期:
2017-03-05
通讯作者:
刘煌,liuhuangswpu@sina.com
基金资助:
国家重点研发计划项目(2016YFC0304008)。
YANG Xiping1, LIU Huang2, LI Yun2
Received:
2016-10-11
Revised:
2016-12-08
Online:
2017-03-05
Published:
2017-03-05
Contact:
10.11949/j.issn.0438-1157.20161437
Supported by:
supported by the National Key Research and Development Program of China (2016YFC0304008).
摘要:
综述了水合物生成法在溶液浓缩和混合气分离两大领域的研究进展。分析表明,水合物法在海水淡化、生物工程、油样分离等溶液分离过程均表现出了一定的应用价值,但仍存在浓缩液夹带、分离效率较低或分离压力高等问题而未能实现工业化应用。针对混合气的分离,与单独水合分离过程相比,包含有水合物生成的吸收-水合和吸附-水合双机制耦合分离技术表现出了气体处理量大、分离效率高、或可实现连续气体分离等优势。但与它们相关的一些基础性问题如水合物浆液的实际流动特性、水合物晶粒与多孔介质之间的作用关系等,需要进一步的研究或确认。在此基础上,对这些分离过程的继续研究给出了参考意见:溶液浓缩分离过程可着眼于开发更有效的水合物生成促进剂或耦合其他分离技术等;混合气分离方面可以在寻找更有效的水合物生成促进剂、明确采用乳液体系分离所得水合物浆液的实际流动特性、揭示采用含水多孔介质分离所得不同相之间的作用机制等方面展开。
中图分类号:
杨西萍, 刘煌, 李赟. 水合物法分离混合物技术研究进展[J]. 化工学报, 2017, 68(3): 831-840.
YANG Xiping, LIU Huang, LI Yun. Research progress of separation technology based on hydrate formation[J]. CIESC Journal, 2017, 68(3): 831-840.
[1] | 陈光进, 孙长宇, 马庆兰. 天然气水合物科学与技术[M]. 北京:化学工业出版社, 2007. CHEN G J, SUN C Y, MA Q L. Science and Technology of Natural Gas Hydrate[M]. Beijing:Chemical Industry Press, 2007. |
[2] | HAMMERSCHMIDT E G. Formation of gas hydrates in natural gas transmission lines[J]. Ind. Eng. Chem., 1934, 26:851-855. |
[3] | YOUSIF M H. Effect of under inhibition with methanol and ethylene glycol on the hydrate-control process[J]. Soc. Pet. Eng. Prod. Facil., 1998, 13:184-189. |
[4] | SLOAN E D, CHRISTIANSEN R L, LEDERHOS J, et al. Additives and method for controlling clathrate hydrates in fluid systems:US 5639925[P]. 1997. |
[5] | XU S, FAN S, FANG S, et al. Pectin as an extraordinary natural kinetic hydrate inhibitor[J]. Sci. Rep., 2016, 6:23220. |
[6] | HUO Z, FREER E, LAMAR M, et al. Hydrate plug prevention by anti-agglomeration[J]. Chem. Eng. Sci., 2001, 56:4979-4991. |
[7] | JAVANMARDI J, MOSHFEGHIAN M. Energy consumption and economic evaluation of water desalination by hydrate phenomenon[J]. Appl. Therm. Eng., 2003, 23(7):845-857. |
[8] | GAARDER C. Crystallization of mechanical pulp mill effluents through hydrate formation for the recovery of water[D]. Vancouver, BC Canada:University of British Columbia, 1991. |
[9] | 陈光进, 程宏远, 樊栓狮. 新型水合物分离技术研究进展[J]. 现代化工, 1999, 19(7):12-14. CHEN G J, CHENG H Y, FAN S S. New separation technology through forming solid gas hydrates[J]. Mod. Chem. Ind., 1999, 19(7):12-14. |
[10] | 樊栓狮, 程宏远, 陈光进, 等. 水合物分离技术研究[J]. 现代化工, 1999, 19(2):11-14. FAN S S, CHENG H Y, CHEN G J, et al. Separation technique based on gas hydrate formation[J]. Mod. Chem. Ind., 1999, 19(2):11-14. |
[11] | LINGA P, KUMAR R, ENGLEZOS P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide[J]. J. Hazard. Mater., 2007, 149(3):625-629. |
[12] | LI S, FAN S, WANG J, et al. CO2 capture from binary mixture via forming hydrate with the help of tera-n-butyl ammonium bromide[J]. J. Nat. Gas Chem., 2009, 18:15-20. |
[13] | ZHANG B, WU Q. Thermodynamic promotion of tetrahydrofuran on methane separation from low-concentration coal mine methane based on hydrate[J]. Energy Fuels, 2010, 24:2530-2535. |
[14] | PARKER A. Potable water from sea-water[J]. Nature, 1942, 149:184-186. |
[15] | BARDUHN A J, TOWLSON H E, HU Y C. The properties of some new gas hydrates and their use in demineralizing sea water[J]. AIChE J., 1962, 8:176-183. |
[16] | PAVLOV G D, MEDVEDEV I N. Gas hydrating process of water desalination[C]//Proceeding of 1st International Symposium on Water Desalination. 1966:123-127. |
[17] | DELYANNIS A, DELYNNIS E. Solar distillation plant of high capacity[C]//4th Proceeding of International Symposium on Fresh Water from Sea. Athens, Greece, 1973. |
[18] | BARDUHN A J, ROUX G M, RICHARD H A, et al. The rate of formation of the hydrates of F-31(CH2ClF) and F-142b(CH3CClF2) in a stirred tank reactor[J]. Desalination, 1976, 18:59-69. |
[19] | TLEILMAT B W. Freezing methods//Principles of Desalination[M]. 2nd ed. New York:Academic Press, 1980:359-400. |
[20] | KHAN A H. Freezing//Desalination Processes and Multistage Flash Distillation Practice[M]. Amsterdam:Elservier, 1986:55-68. |
[21] | CORAK D, BARTH T, HØILAND S. Effect of subcooling and amount of hydrate former on formation of cyclopentane hydrates in brine[J]. Desalination, 2011, 278:268-274. |
[22] | CHA J H, SEOL Y. Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests[J]. ACS Sustainable Chem. Eng., 2013, 1:1218-1224. |
[23] | LEE D, LEE Y, LEE S, SEO Y. Accurate measurement of phase equilibria and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl for potential application in desalination[J]. Korean J. Chem. Eng., 2016, 33:1425-1430. |
[24] | NGEMA P T, NAIDOO P, MOHAMMADI A H, et al. Thermodynamic stability conditions of clathrate hydrates for refrigerant (R134a or R410a or R507) with MgCl2 aqueous solution[J]. Fluid Phase Equilib., 2016, 413:92-98. |
[25] | KARAMODDIN M, VARAMINIAN F. Water desalination using R141b gas hydrate formation[J]. Desalin. Water Treat., 2014, 52:13-15. |
[26] | HAN S, SHIN J Y, RHEE Y W, et al. Enhanced efficiency of salt removal from brine for cyclopentane hydrates by washing, centrifuging, and sweating[J]. Desalination, 2014, 354:17-22. |
[27] | ENGLEZOS P. Clathrate hydrates[J]. Ind. Eng. Chem. Res., 1993, 32:1251-1274. |
[28] | HUANG C P, FENNEMA O, POWRIE W D. Gas hydrates in aqueous-organic systems(Ⅰ):Preliminary studies[J]. Cryobiology, 1965, 2:109-115. |
[29] | HUANG C P, FENNEMA O, POWRIE W D. Gas hydrates in aqueous-organic systems(Ⅱ):Concentration by gas hydrate formation[J]. Cryobiology, 1966, 2:240-245. |
[30] | YOON J H, LEE H. Clathrate phase equilibria for the water-phenol-carbon dioxide system[J]. AIChE J., 1997, 43:1884-1893. |
[31] | WILLSON R C, BULOT E, COONEY C L. Clathrate hydrate formation enhances near-critical and supercritical solvent extraction equilibria[J]. Chem. Eng. Commun., 1990, 95:47-55. |
[32] | HEIST ENGINEERING CORP. Energy conservation:beet sugar refining applications, hydrate freeze separation program[R]. Final Report, US Department of Energy (DOE/ID 12442-1; DE88009812), 1988. |
[33] | LI S, QI F, DU K, et al. An energy-efficient juice concentration technology by ethylene hydrate formation[J]. Sep. Purif. Technol., 2017, 173:80-85. |
[34] | LI S, SHEN Y, LIU D, et al. Concentrating orange juice through CO2 clathrate hydrate technology[J]. Chem. Eng. Res. Des., 2015, 93:773-778. |
[35] | SMITH A, BABAEE S, MOHAMMADI A H. Clathrate hydrate dissociation conditions for refrigerant+sucrose aqueous solution:experimental measurement and thermodynamic modeling[J]. Fluid Phase Equilibria, 2016, 413:99-109. |
[36] | ANDRE S, PAUL B. Process for extracting water from a liquid fluid:WO8910392[P].1989. |
[37] | NGAN Y T, ENGLEZOS P. Concentration of mechanical pulp mill effluents and NaCl solutions through propane hydrate formation[J]. Ind. Eng. Chem. Res., 1996, 35:1894-1900. |
[38] | SONG Y C, DONG H S, YANG L, et al. Hydrate-based heavy metal separation from aqueous solution[J]. Sci. Rep., 2016, 6:21389. |
[39] | ESLAMIMANESH A, GHARAGHEIZI F, MOHAMMADI A H, et al. Artifical neural network modeling of solubility of supercritical carbon dioxide in 24 commonly used ionic liquid[J]. Chem. Eng. Sci., 2011, 66:3039-3044. |
[40] | PENG X, HU Y, LIU Y, et al. Separation of ionic liquids from dilute aqueous solutions using the method based on CO2 hydrates[J]. J. Nat. Gas Chem., 2010, 19:81-85. |
[41] | TUMBA K, REDDY P, NAIDOO P, et al. Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid[J]. J. Chem. Eng. Data, 2011, 56:3620-3629. |
[42] | KESHAVARZ L, JAVANMARDI J, ESLAMIMANESH A, et al. Experimental measurement and thermodynamic modeling of methane hydrate dissociation conditions in the presence of aqueous solution of ionic liquid[J]. Fluid Phase Equilib., 2013, 354:312-318. |
[43] | LUND D B, FENNEMA O, POWRIE W D. Rotation apparatus for shell-freezing[J]. Cryobiology, 1968, 5:26-28. |
[44] | LUND D B, FENNEMA O, POWRIE W D. Effect of gas hydrates and hydrate formers on invertase activity[J]. Arch. Biochem. Biophys., 1969, 129:181-188. |
[45] | PHILLIPS J B, NGUYEN H, JOHN V T. Protein recovery from reversed micellar solutions through contact with a pressurized gas phase[J]. Biotechnol. Prog., 1991, 7:43-48. |
[46] | BAYRAKTAR E, KOCAPICAK Ö, MEHMETOGLU Ü, et al. Recovery of amino acids from reverse micellar solution by gas hydrate[J]. Chem. Eng. Res. Des., 2008, 86:209-213. |
[47] | ØSTERGAARD K K, TOHIDI B, DANESH A, et al. A novel approach for oil and gas separation by using gas hydrate technology[J]. Ann. NY Acad. Sci., 2000, 912:832-842. |
[48] | SPENCER D F. Methods of selectivity separating CO2 from a multicomponent gaseous stream:US5700311[P]. 1997. |
[49] | BELANDRIA V, ESLAMIMANESH A, MOHAMMADI A H, et al. Compositional analysis and hydrate dissociation conditions measurements for carbon dioxide+methane+water system[J]. Ind. Eng. Chem. Res., 2011, 50:5783-5794. |
[50] | DUC N H, CHAUVY F, HERRI J M. CO2 capture by hydrate crystallization-a potential solution for gas emission of steelmaking industry[J]. Energy Convers. Manage., 2007, 48(4):1313-1322. |
[51] | FAN S, LI S, WANG J, et al. Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates[J]. Energy Fuels, 2009, 23:4202-4208. |
[52] | KIM S M, LEE J D, LEE H J, et al. Gas hydrate formation method to capture the carbon dioxide for pre-combustion process in IGCC plant[J]. Int. J. Hydrogen Energy, 2011, 36(1):1115-1121. |
[53] | LI X S, XU C G, CHEN Z Y, et al. Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride[J]. Energy, 2010, 35:3902-3908. |
[54] | LI X S, XU C G, CHEN Z Y, et al. Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns[J]. Int. J. Hydrogen Energy, 2012, 37:720-727. |
[55] | LI X S, XU C G, CHEN Z Y, et al. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane[J]. Energy, 2011, 36:1394-1403. |
[56] | HAPPEL J, HNATOW M A, MEYER H. The study of separation nitrogen from methane by hydrate formation using a novel apparatus[J]. Ann. NY Acad. Sci., 1994, 715:412-414. |
[57] | SUN Q, GUO X Q, LIU A X, et al. Experimental study on the separation of CH4 and N2 via hydrate formation in TBAB solution[J]. Ind. Eng. Chem. Res., 2011, 50(4):2284-2288. |
[58] | 孙强. 水合物法分离混空煤层气技术基础研究[D]. 北京:中国石油大学, 2012. SUN Q. Basic study on the separation technology of air-mixed coalbed methane via hydrate formation[D]. Beijing:China University of Petroleum, 2012. |
[59] | 张凌伟. 水合法分离裂解干气的实验及模拟研究[D]. 北京:中国石油大学, 2005. ZHANG L W. Experimental and modeling study on the separation of cracking gas via forming hydrate[D]. Beijing:China University of Petroleum, 2005. |
[60] | ZHANG L W, CHEN G J, GUO X Q, et al. The partition coefficients of ethane between vapor and hydrate phase for methane+ethane+water and methane+ethane+THF+water systems[J]. Fluid Phase Equilib., 2004, 225(9):141-144. |
[61] | ZHANG L W, CHEN G J, SUN C Y, et al. The partition coefficients of ethylene between hydrate and vapor for methane+ethylene+water and methane+ethylene+SDS+water systems[J]. Chem. Eng. Sci., 2005, 60(19):5356-5362. |
[62] | CHA I, LEE S, LEE J D, et al. Separation of SF6 from gas mixtures using gas hydrate formation[J]. Environ. Sci. Technol., 2010, 44(16):6117-6122. |
[63] | KAMATA Y, YAMAKOSHI Y, EBINUMA T, et al. Hydrogen sulfide separation using tetra-n-butyl ammonium bromide semi-clathrate hydrate[J]. Energy Fuels, 2005, 19(4):1717-1722. |
[64] | ZHONG Y, ROGERS R E. Surfactant effects on gas hydrate formation[J]. Chem. Eng. Sci., 2000, 55:4175-4187. |
[65] | 王秀琳. 吸收-水合法分离气体混合物的实验及模拟研究[D]. 北京:中国石油大学, 2009. WANG X L. Experimental and modeling study on the separation of gas mixtures using absorbing plus hydrating technology[D]. Beijing:China University of Petroleum, 2009. |
[66] | WANG X L, CHEN G J, YANG L Y, et al. Study on the recovery of hydrogen from refinery (hydrogen+methane) gas mixtures using hydrate technology[J]. Sci. China Ser. B-Chem., 2008, 51(2):171-178. |
[67] | LIU H, MU L, LIU B, et al. Experimental studies of the separation of C2 compounds from CH4+C2H4+C2H6+N2 gas mixtures by an absorption-hydration hybrid method[J]. Ind. Eng. Chem. Res., 2013, 52(7):2707-2713. |
[68] | LIU H, MU L, WANG B, et al. Separation of ethylene from refinery dry gas via forming hydrate in W/O dispersion system[J]. Sep. Purif. Technol., 2013, 116:342-350. |
[69] | LIU H, WANG J, CHEN G J, et al. High-efficiency separation of a CO2/H2 mixture via hydrate formation in W/O emulsions in the presence of cyclopentane and TBAB[J]. Int. J. Hydrogen Energy, 2014, 39(15):7910-7918. |
[70] | SEO Y T, MOUDRAKOVSKI I L, RIPMEESTER J A. Efficient recovery of CO2 from flue gas by clathrate hydrate formation in porous silica gels[J]. Environ. Sci. Technol., 2005, 39:2315-2319. |
[71] | ZHANG X X, XIAO P, ZHAN C H, et al. Separation of methane/ethylene gas mixtures using wetted ZIF-8[J]. Ind. Eng. Chem. Res., 2015, 54:7890-7898. |
[72] | ZHONG D L, SUN D J, LU Y Y, et al. Adsorption-hydration hybrid process for methane separation from a CH4/N2/O2 gas mixture using pulverized coal particles[J]. Ind. Eng. Chem. Res., 2014, 53:15738-15746. |
[73] | ZHONG D L, LI Z, LU Y Y, et al. Investigation of CO2 capture from a CO2+CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve[J]. Ind. Eng. Chem. Res., 2016, 55:7973-7980. |
[74] | LUO Y T, ZHU J H, FAN S S, et al. Study on the kinetics of hydrate formation in a bubble column[J]. Chem. Eng. Sci., 2007, 62:1000-1009. |
[75] | CHEN J, SUN C Y, LIU B, et al. Metastable boundary conditions of water-in-oil emulsions in hydrate formation region[J]. AIChE J., 2012, 58:2216-2225. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[5] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[6] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[9] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[10] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[11] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[12] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[13] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[14] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[15] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||