[1] |
FERNANDEZ D C J, SAZ-OROZCO P D, BARATTI R, et al. Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network[J]. Expert Systems with Applications, 2016, 63:8-19.
|
[2] |
HIROMASA K, KIMITO F. Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 137:57-66.
|
[3] |
SOUZA F, ARAUJO R, MENDES J. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152:69-79.
|
[4] |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3):788-800. CAO P F, LUO X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3):788-800.
|
[5] |
唐苦, 王振雷. 一种基于KPCA-BN的软测量建模方法[J]. 计算机与应用化学, 2012, 29(9):1009-1102. TANG K, WANG Z L. A soft sensing method based on KPCA and BN[J]. Computers and Applied Chemistry, 2012, 29(9):1009-1102.
|
[6] |
王振雷, 唐苦, 王昕. 一种基于D-S和ARIMA的多模型软测量建模方法[J]. 控制与决策, 2014, 29(7):1160-1166. WANG Z L, TANG K, WANG X. A multi-model soft sensing method based on D-S and ARIMA model[J]. Control and Decision, 2014, 29(7):1160-1166.
|
[7] |
TIAN Z D, LI S J, WANG Y H, et al. A multi-model fusion soft sensor modelling method and its application in rotary kiln calcination zone temperature prediction[J]. Transactions of the Institute of Measurement and Control, 2016, 38(1):110-124.
|
[8] |
熊伟丽, 李妍君, 姚乐, 等. 一种动态校正的AGMM-GPR多模型软测量建模方法[J]. 大连理工大学学报, 2016, 56(1):77-84. XIONG W L, LI Y J, YAO L, et al. A dynamically corrected AGMM-GPR multi-model soft sensor modeling method[J]. Journal of Dalian University of Technology, 2016, 56(1):77-84.
|
[9] |
JIN H P, CHEN X G, YANG J W, et al. Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes[J]. Chemical Engineering Science, 2015, 131:282-303.
|
[10] |
李喆. 自适应多变量统计过程监控研究[D]. 杭州:浙江大学, 2015. LI Z. Research on adaptive multivariable statistical process monitoring[D]. Hangzhou:Zhejiang University, 2015.
|
[11] |
王春鹏,于佐军, 孟凡强. 折息移动窗递推PLS算法及其在聚丙烯生产过程中的应用[J]. 化工学报, 2013, 64(12):4593-4598. WANG C P, YU Z J, MENG F Q. Discount moving window recursive PLS algorithm and its application to process of polypropylene production[J]. CIESC Journal, 2013, 64(12):4593-4598.
|
[12] |
MIN H, LUO X L. Calibration of soft sensor by using Just-in-time modeling and AdaBoost learning method[J]. Chinese Journal of Chemical Engineering, 2016, 24(8):1038-1046.
|
[13] |
李奇安, 郭强. 基于在线SVM的裂解炉燃料气热值软测量[J]. 浙江大学学报(工学版), 2015, 49(3):457-487. LI Q A, GUO Q. Soft measurement for calorific value of cracking fuel gas based on Online SVM algorithm[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(3):457-487.
|
[14] |
ZHANG M, LIU X G. A real-time model based on optimized least squares support vector machine for industrial polypropylene melt index prediction[J]. Journal of Chemometrics, 2016, 30(6):324-331.
|
[15] |
ZHANG M, LIU X G, ZHANG Z Y. A soft sensor for industrial melt index prediction based on evolutionary extreme learning machine[J]. Chinese Journal of Chemical Engineering, 2016, 24(8):1013-1019.
|
[16] |
HE Y L, GENG Z Q, ZHU Q X. Data driven soft sensor development for complex chemical processes using extreme learning machine[J]. Chemical Engineering Research & Design, 2015, 102:1-11.
|
[17] |
瓦普尼克. 统计学习理论的本质[M]. 张学工, 译. 北京:清华大学出版社, 2000. VLADIMIR N V. The Essence of Statistical Learning Theory[M]. ZHANG X G, trans. Beijing:Tsinghua University Press, 2000.
|
[18] |
唐苦, 王昕, 王振雷. 基于证据合成规则的多模型软测量[J]. 控制理论与应用, 2014, 31(5):632-637. TANG K, WANG X, WANG Z L. Multi-model soft sensor based on Dempster-Shafer rule[J]. Control Theory & Application, 2014, 31(5):632-637.
|
[19] |
LU Y, YANG H Z. A multi-model approach for soft sensor development based on feature extraction using weighted kernel Fisher criterion[J]. Chinese Journal of Chemical Engineering, 2014, 22(2):146-152.
|
[20] |
SU Z G, WANG P H, SHEN J O, et al. Multi-model strategy based evidential soft sensor model for predicting evaluation of variables with uncertainty[J]. Applied Soft Computing, 2011, 11(2):2595-2610.
|
[21] |
庞强, 邹涛, 丛秋梅, 等. 基于高斯混合模型与主元分析的模型切换方法[J]. 化工学报, 2013, 64(8):2938-2946. PANG Q, ZOU T, CONG Q M, et al. Multi-model switching based on Guassian mixture model and principal component analysis[J]. CIESC Journal, 2013, 64(8):2938-2946.
|
[22] |
XIONG W L, ZHANG W, XU B G, et al. JITL based MWGPR soft sensor for multi-mode process with dual-updating strategy[J]. Computers & Chemical Engineering, 2016, 90:260-267.
|
[23] |
ZHANG M X, LI Y, KANO M. Quality prediction in complex batch processes with just-in-time learning model based on non-Gaussian dissimilarity measure[J]. Industrial & Engineering Chemistry Research, 2015, 54(31):7694-7705.
|
[24] |
LIU Y, CHEN J H. Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes[J]. Journal of Process Control, 2013, 23:793-804.
|
[25] |
范苗. 基于高斯混合模型的时变过程软测量建模[D]. 杭州:浙江大学, 2015. FAN M. Gaussian mixture model-based time-varying soft sensor development[D]. Hangzhou:Zhejiang University, 2015.
|
[26] |
HIROMASA K, KIMITO F. Application of online support vector regression for soft sensors[J]. Dept. of Chemical System Engineering, 2014, 60(2):600-612.
|
[27] |
ZENG J, WNG J, GUO J. Local multi-model method based on similarity of vector[J]. Application Research of Computers, 2012, 29(5):1631-1634.
|
[28] |
罗雄麟, 赵晓鹰, 吴博, 等. 乙烯精馏塔异常工况在线侦测与控制[J]. 化工学报, 2014, 65(11):4517-4523. LUO X L, ZHAO X Y, WU B, et al. Online detection and control of ethylene column abnormal condition[J]. CIESC Journal, 2014, 65(11):4517-4523.
|
[29] |
陈德呈. 乙烯精馏过程软测量技术应用研究[D]. 上海:华东理工大学, 2011. CHEN D C. Soft sensing technology in the ethylene distillation process applied research[D]. Shanghai:East China University of Science and Technology, 2011.
|
[30] |
LI S J, QIAN F. Application of soft sensors in the estimation of ethylene distillation column composition[C]//Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou, 2004:426-3430.ocesses[J]. Journal of Process Control, 2013, 23: 793-804.
|
[11] |
李奇安, 郭强. 基于在线SVM的裂解炉燃料气热值软测量[J]. 浙江大学学报(工学版), 2015, 49(3): 457-487. LI Q, GUO Q. Soft measurement for calorific value of cracking fuel gas based on Online SVM algorithm[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(3): 457-487.
|
[12] |
范苗. 基于高斯混合模型的时变过程软测量建模[D]. 杭州: 浙江大学, 2015. Fan M, Gaussian Mixture Model-based Time-varying Soft Sensor Development[D]. Hangzhou: Zhejiang University, 2015.
|
[13] |
ZENG J, WNG J, GUO J. Local multi-model method based on similarity of vector[J]. Application Research of Computers, 2012, 29(5): 1631-1634.
|
[14] |
SU Z G, WANG P H, SHEN J O, et al. Multi-model strategy based evidential soft sensor model for predicting evaluation of variables with uncertainty[J]. Applied Soft Computing, 2011, 11(2): 2595-2610.
|
[15] |
Min H, Luo X L. Calibration of soft sensor by using Just-in-time modeling and AdaBoost learning method[J]. Chinese Journal of Chemical Engineering, 2016, 24(8): 1038-1046.
|
[16] |
Xiong W L, ZHANG W, XU B G, et al. JITL based MWGPR soft sensor for multi-mode process with dual-updating strategy[J]. Computers & Chemical Engineering, 2016, 90: 260-267.
|
[17] |
ZHANG M X, LI Y, Kano M. Quality Prediction in Complex Batch Processes with Just-in-Time Learning Model Based on Non-Gaussian Dissimilarity Measure[J]. Industrial & Engineering Chemistry Research, 2015, 54(31): 7694-7705.
|
[18] |
SU Z G, WANG P H, SHEN J, et al. Multi-model strategy based evidential soft sensor model for predicting evaluation of variables with uncertainty. Applied Soft Computing[J], 2011, 11: 2595-2610.
|
[19] |
HIROMASA K, KIMITO F. Application of online support vector regression for soft sensors[J]. Dept. of Chemical System Engineering, 2014, 60(2): 600-612.
|
[20] |
ZHANG M, LIU X G. A real-time model based on optimized least squares support vector machine for industrial polypropylene melt index prediction[J]. Journal of Chemometrics, 2016, 30(6): 324-331.
|
[21] |
唐苦, 王振雷. 一种基于KPCA-BN的软测量建模方法[J], 计算机与应用化学, 2012, 29(9): 1009-1102. TANG K, WANG Z L. A soft sensing method based on KPCA and BN[J]. Computers and Applied Chemistry, 2012, 29(9): 1009-1102.
|
[22] |
罗雄麟, 赵晓鹰, 吴博, 等. 乙烯精馏塔异常工况在线侦测与控制[J]. 化工学报, 2014, 65(11): 4517-4523. LUO X L, ZHAO X Y, WU B, et al. Online detection and control of ethylene column abnormal condition[J]. CIESC Journal, 2014, 65(11): 4517-4523.
|
[23] |
李喆. 自适应多变量统计过程监控研究[D]. 杭州: 浙江大学, 2015. LI Z. Research on adaptive multivariable statistical process monitoring[D]. Hangzhou: Zhejiang University, 2015.
|
[24] |
唐苦, 王昕, 王振雷. 基于证据合成规则的多模型软测量[J]. 控制理论与应用, 2014, 31(5): 632-637. TANG K, WANG X, WANG Z L. Multi-model soft sensor based on Dempster-Shafer rule[J], Control Theory & Application, 2014, 31(5): 632-637.
|
[25] |
ZHANG M, LIU X G, ZHANG Z Y. A soft sensor for industrial melt index prediction based on evolutionary extreme learning machine[J]. Chinese Journal of Chemical Engineering, 2016, 24(8): 1013-1019.
|
[26] |
HE Y L, Geng Z Q, ZHU Q X. Data driven soft sensor development for complex chemical processes using extreme learning machine[J]. Chemical Engineering Research & Design, 2015, 102:1-11.
|
[27] |
LU Y, YANG H Z. A Multi-model Approach for Soft Sensor Development Based on Feature Extraction Using Weighted Kernel Fisher Criterion[J]. Chinese Journal of Chemical Engineering, 2014, 22(2): 146-152.
|
[28] |
陈德呈. 乙烯精馏过程软测量技术应用研究[D]. 上海: 华东理工大学, 2011. CHEN D C. Soft sensing technology in the ethylene distillation process applied research[D]. Shanghai: East China University of Science and Technology, 2011.
|
[29] |
LI S J, QIAN F. Application of soft sensors in the estimation of ethylene distillation column composition[A]. Proceedings of the 5th World Comgress on Intelligent Control and Automation[C]. Hangzhou, P.R. China, 2004: 426-3430.
|
[30] |
Vladimir N. Vapnik. The Essence of Statistical Learning Theory[M]. ZHANG X G, trans. Beijing: Tsinghua University Press, 2000.
|