化工学报 ›› 2017, Vol. 68 ›› Issue (7): 2896-2909.DOI: 10.11949/j.issn.0438-1157.20170052
向柏祥, 杨海瑞, 吕俊复
收稿日期:
2017-01-12
修回日期:
2017-02-22
出版日期:
2017-07-05
发布日期:
2017-07-05
通讯作者:
吕俊复
基金资助:
国家重点基础研究发展计划项目(2014CB744305)。
XIANG Baixiang, YANG Hairui, LÜ Junfu
Received:
2017-01-12
Revised:
2017-02-22
Online:
2017-07-05
Published:
2017-07-05
Contact:
10.11949/j.issn.0438-1157.20170052
Supported by:
supported by the National Basic Research Program of China (2014CB744305).
摘要:
燃煤锅炉烟气中SO3能对锅炉设备、大气环境造成包括低温腐蚀、粘污和蓝烟等一系列的危害。因而,对烟气中SO3主要影响因素及其影响规律的研究对于预测和控制烟气中SO3浓度以满足不断增长的节能减排标准有重要意义。基于文献中的C/H/O/N/S化学动力学模型的优化、整合建立了化学动力学模型,对烟气中SO3主要影响因素及其影响规律进行计算研究。还基于自主设计搭建了全混流反应器测量装置,对上述计算工况中的SO3浓度进行测量。研究发现,烟气中SO3浓度主要受SO2、O2和H2O的浓度,以及温度和反应停留时间等影响。SO3浓度受烟气中CO、NO的影响也较为显著,但是受CO2的影响不大。另外,随着反应停留时间的增加,烟气中SO3浓度先后经历了3个不同阶段:急剧增加,增长趋势逐渐减缓和逐渐减少。
中图分类号:
向柏祥, 杨海瑞, 吕俊复. 燃煤锅炉烟气中SO3生成的化学动力学模型和实验研究[J]. 化工学报, 2017, 68(7): 2896-2909.
XIANG Baixiang, YANG Hairui, LÜ Junfu. Kinetic modelling and experimental studies on SO3 generation in flue gas for coal-fired boiler[J]. CIESC Journal, 2017, 68(7): 2896-2909.
[1] | FLEIG D, ANDERSSON K, NORMANN F, et al. SO3 formation under oxyfuel combustion conditions [J]. Industrial & Engineering Chemistry Research, 2011, 50 (14): 8505-8514. |
[2] | MOSER R E. SO3's impacts on plant O&M: part I [J]. Power, 2006, 150 (8): 40-40. |
[3] | MOSER R E. Benefits of effective SO3 removal in coal-fired power plants: beyond opacity control [C]//Power Plant and Air Pollutant Control MEGA Symposium, Session. 2006. |
[4] | GLARBORG P, MARSHALL P. Mechanism and modeling of the formation of gaseous alkali sulfates [J]. Combustion and Flame, 2005, 141 (1): 22-39. |
[5] | 齐立强, 原永涛, 史亚微. 燃煤烟气中的 SO3对微细颗粒物电除尘特性的影响 [J]. 动力工程学报, 2011, 31 (7): 539-543.QI L Q, YUAN Y T, SHI Y W. Influence of SO3 on electrostatic precipitation of fine particles in flue gas [J]. Journal of Chinese Society of Power Engineering, 2011, 31 (7): 539-543. |
[6] | XIANG B X, ZHANG M, YANG H R, et al. Prediction of acid dew point in flue gas of boilers burning fossil fuels [J]. Energy Fuels, 2016, 30 (4): 3365-3373. |
[7] | XIANG B X, TANG B, WU Y X, et al. Predicting acid dew point with a semi-empirical model [J]. Appl. Therm. Eng., 2016, 106 (5): 992-1001. |
[8] | FLEIG D. Experimental and modeling studies of sulfur-based reactions in oxy-fuel combustion [D]. Sverige: Chalmers University of Technology, 2012. |
[9] | 陈鹏. 静电除尘器除尘效率影响因素的研究 [D]. 沈阳: 东北大学, 2009.CHEN P. Study on the influence factor of collection efficiency of the electrostatic precipitator [D]. Shenyang: Northeastern University, 2009. |
[10] | 张悠. 烟气中 SO3 测试技术及其应用研究 [D]. 杭州: 浙江大学, 2013.ZHANG Y. Research and application of SO3 measurement in flue gas [D]. Hangzhou: Zhejiang University, 2013. |
[11] | 刘建华, 杨晓博, 张琛, 等. Fe2O3对V2O5-WO3/TiO2 催化剂表面性质及其性能的影响 [J]. 化工学报, 2015, 67 (4): 1287-1293.LIU J H, YANG X B, ZHANG C, et al. Effect of Fe2O3 on surface properties and activities of V2O5-WO3/TiO2 catalysts [J]. CIESC Journal, 2015, 67 (4): 1287-1293. |
[12] | REIDICK H, REIFENHAUSER R. Catalytic SO3 formation as function of boiler fouling [J]. Combustion, 1980, 51: 17. |
[13] | BELO L P, ELLIOTT L K, STANGER R J, et al. High-temperature conversion of SO2 to SO3: homogeneous experiments and catalytic effect of fly ash from air and oxy-fuel firing [J]. Energy Fuels, 2014, 28 (11): 7243-7251. |
[14] | SPÖRL R, WALKER J, BELO L, et al. SO3 emissions and removal by ash in coal-fired oxy-fuel combustion [J]. Energy Fuels, 2014, 28 (8): 5296-5306. |
[15] | JØRGENSEN T L, LIVBJERG H, GLARBORG P. Homogeneous and heterogeneously catalyzed oxidation of SO2 [J]. Chemical Engineering Science, 2007, 62 (16): 4496-4499. |
[16] | ALZUETA M U, BILBAO R, GLARBORG P. Inhibition and sensitization of fuel oxidation by SO2 [J]. Combustion and Flame, 2001, 127 (4): 2234-2251. |
[17] | GIMéNEZ-LóPEZ J, MARTINEZ M, MILLERA A, et al. SO2 effects on CO oxidation in a CO2 atmosphere, characteristic of oxy-fuel conditions [J]. Combustion and Flame, 2011, 158 (1): 48-56. |
[18] | RASMUSSEN C L, GLARBORG P, MARSHALL P. Mechanisms of radical removal by SO2 [J]. Proceedings of the Combustion Institute, 2007, 31 (1): 339-347. |
[19] | MUELLER M A, YETTER R A, DRYER F L. Kinetic modeling of the CO/H2O/O2/NO/SO2 system: implications for high-pressure fall-off in the SO2+O (+M)= SO3 (+M) reaction [J]. International Journal of Chemical Kinetics, 2000, 32 (6): 317-339. |
[20] | YILMAZ A, HINDIYARTI L, JENSEN A D, et al. Thermal dissociation of SO3 at 1000-1400 K [J]. The Journal of Physical Chemistry A, 2006, 110 (21): 6654-6659. |
[21] | HINDIYARTI L, GLARBORG P, MARSHALL P. Reactions of SO3 with the O/H radical pool under combustion conditions [J]. The Journal of Physical Chemistry A, 2007, 111 (19): 3984-3991. |
[22] | SENDT K, JAZBEC M, HAYNES B S. Chemical kinetic modeling of the H/S system: H2S thermolysis and H2 sulfidation [J]. Proceedings of the Combustion Institute, 2002, 29 (2): 2439-2446. |
[23] | ALLEN M T, YETTER R A, DRYER F L. High pressure studies of moist carbon monoxide/nitrous oxide kinetics [J]. Combustion and Flame, 1997, 109 (3): 449-470. |
[24] | SPENCER H, ROMERO C, LEVY E, et al. Modeling of SO3 formation process in coal-fired boilers [R]. California: Electric Power Research Institute, 2007. |
[25] | FLEIG D, ANDERSSON K, JOHNSSON F, et al. Conversion of sulfur during pulverized oxy-coal combustion [J]. Energy Fuels, 2011, 25 (2): 647-655. |
[26] | 肖雨亭, 贾曼, 徐莉, 等. 烟气中三氧化硫及硫酸雾滴的分析方法 [J]. 环境科技, 2012, 25 (5): 43-48.XIAO Y T, JIA M, XU L, et al. The analytic method of sulfur trioxide and sulfuric acid mist in flue gas [J]. Environmental Science and Technology, 2012, 25 (5): 43-48. |
[27] | 郭阳, 李媛, 汪永威, 等. SCR 脱硝系统烟气中 SO3 测试采样方法对比研究 [J]. 电力建设, 2013, 34 (6): 69-72.GUO Y, LI Y, WANG Y W, et al. Comparison of SO3 testing and sampling methods in flue gas for SCR denitration system [J]. Electric Power Construction, 2013, 34 (6): 69-72. |
[28] | DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts [J]. Applied Catalysis B: Environmental, 1998, 19 (2): 103-117. |
[29] | FLEIG D, VAINIO E, ANDERSSON K, et al. Evaluation of SO3 measurement techniques in air and oxy-fuel combustion [J]. Energy Fuels, 2012, 26 (9): 5537-5549. |
[30] | SMITH G P, GOLDEN D M, FRENKLACH M, et al. GRI 3.0 Mechanism [R]. Illinois: Gas Research Institute, 1999. |
[31] | Chemkin-pro. release 15101, reaction design [R]. San Diego. |
[32] | KEE R J, RUPLEY F M, MILLER J A. The Chemkin thermodynamic data base: Sandia report SAND87-8215B[R]. Livermore, CA, 1987.>, 2007, 31(1): 339-347. |
[19] | MUELLER M A, YETTER R A, DRYER F L. Kinetic modeling of the CO/H2O/O2/NO/SO2 system: Implications for high-pressure fall-off in the SO2+O (+M)= SO3 (+M) reaction [J]. International Journal of Chemical Kinetics, 2000, 32(6): 317-339. |
[20] | YILMAZ A, HINDIYARTI L, JENSEN A D, et al. Thermal dissociation of SO3 at 1000-1400 K [J]. The Journal of Physical Chemistry A, 2006, 110(21): 6654-6659. |
[21] | HINDIYARTI L, GLARBORG P, MARSHALL P. Reactions of SO3 with the O/H radical pool under combustion conditions [J]. The Journal of Physical Chemistry A, 2007, 111(19): 3984-3991. |
[22] | SENDT K, JAZBEC M, HAYNES B S. Chemical kinetic modeling of the H/S system: H2S thermolysis and H2 sulfidation [J]. Proceedings of the Combustion Institute, 2002, 29(2): 2439-2446. |
[23] | ALLEN M T, YETTER R A, DRYER F L. High pressure studies of moist carbon monoxide/nitrous oxide kinetics [J]. Combustion and Flame, 1997, 109(3): 449-470. |
[24] | SPENCER H, ROMERO C, LEVY E, YAO Z, BILIRGEN H, CARAM H. Modeling of SO3 Formation Process in coal-fired boilers [R]. Electic Power Research Institute, 2007. |
[25] | FLEIG D, ANDERSSON K, JOHNSSON F, et al. Conversion of sulfur during pulverized oxy-coal combustion [J]. Energy Fuels, 2011, 25(2): 647-655. |
[26] | FLEIG D, VAINIO E, ANDERSSON K, et al. Evaluation of SO3 measurement techniques in air and oxy-fuel combustion [J]. Energy Fuels, 2012, 26(9): 5537-5549. |
[27] | 肖雨亭, 贾曼, 徐莉, 等. 烟气中三氧化硫及硫酸雾滴的分析方法[J]. 环境科技, 2012, 25(5): 43-48.XIAO Y T, JIA M, XU L, et al. The Analytic Method of Sulfur Trioxide and Sulfuric Acid Mist in Flue Gas [J]. Environmental Science and Technology, 2012, 25(5): 43-48. |
[28] | 郭阳, 李媛, 汪永威, 等. SCR 脱硝系统烟气中 SO3 测试采样方法对比研究[J]. 电力建设, 2013, 34 (6): 69-72.GUO Y, LI Y, WANG Y W, et al. Comparison of SO3 Testing and Sampling Methods in Flue Gas for SCR Denitration System [J]. Electric Power Construction, 2013, 34(6): 69-72. |
[29] | DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts [J]. Applied Catalysis B: Environmental, 1998, 19(2): 103-117. |
[30] | SMITH G P, GOLDEN D M, FRENKLACH M, et al. GRI 3.0 Mechanism [J]. Gas Research Institute, 1999. |
[31] | Chemkin-Pro. Release 15101, Reaction Design [R], San Diego. |
[32] | KEE R J, RUPLEY F M, MILLER J A. The Chemkin Thermodynamic Data Base [R], Sandia Report SAND87-8215B, Livermore, CA, 1987. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[3] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[4] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[5] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[6] | 时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
[7] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[8] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[9] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[10] | 刘潜, 张香兰, 李志平, 李玉龙, 韩梦醒. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928. |
[11] | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
[12] | 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857. |
[13] | 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943. |
[14] | 何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129. |
[15] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 679
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 399
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||