化工学报 ›› 2017, Vol. 68 ›› Issue (7): 2631-2640.DOI: 10.11949/j.issn.0438-1157.20170127
宋刘斌1, 唐福利1, 肖忠良1, 李灵均2, 曹忠1, 胡超明1, 刘姣1, 李新宇1
收稿日期:
2017-02-07
修回日期:
2017-03-22
出版日期:
2017-07-05
发布日期:
2017-07-05
通讯作者:
肖忠良
基金资助:
国家自然科学基金项目(21501015,21545010,31527803);中国科学院环境监测STS项目(KFJ-SW-STS-173);湖南省自然科学基金项目(2016JJ3007);湖南省科技计划项目(2015GK1046)。
SONG Liubin1, TANG Fuli1, XIAO Zhongliang1, LI Lingjun2, CAO Zhong1, HU Chaoming1, LIU Jiao1, LI Xinyu1
Received:
2017-02-07
Revised:
2017-03-22
Online:
2017-07-05
Published:
2017-07-05
Contact:
10.11949/j.issn.0438-1157.20170127
Supported by:
supported by the National Natural Science Foundation of China (21501015, 21545010, 31527803), the STS Project of the Chinese Academy of Sciences (KFJ-SW-STS-173), the Natural Science Foundation of Hunan Province (2016JJ3007) and the Scientific Program of Hunan Province (2015GK1046).
摘要:
导电聚苯胺(PANI)是近十年来研究最多的导电聚合物,具有比容量高、氧化还原可逆性好、电导率高、合成方法简单、成本低等特点,在化学电源和超级电容器中的应用最为广泛。导电聚苯胺复合材料的合成方法主要分为:原位复合法、共混法、自组装和电化学复合法等。导电聚苯胺复合材料可作为高能物质用于研发电极材料,但目前利用导电聚苯胺对锂离子电池三元正极材料进行修饰改性的研究较少。综述了导电聚苯胺及其复合材料的热电化学性能,重点对导电聚苯胺/锂离子电池复合正极材料的性能进行了阐述。最后对导电聚苯胺复合材料的应用和研究方向进行了总结,并简述了导电聚苯胺包覆改性LiNi1-x-yCoxMnyO2复合材料的应用和展望。
中图分类号:
宋刘斌, 唐福利, 肖忠良, 李灵均, 曹忠, 胡超明, 刘姣, 李新宇. 含导电聚苯胺类锂离子电池复合材料的现状及发展趋势[J]. 化工学报, 2017, 68(7): 2631-2640.
SONG Liubin, TANG Fuli, XIAO Zhongliang, LI Lingjun, CAO Zhong, HU Chaoming, LIU Jiao, LI Xinyu. Current status and development trend of conductive polyaniline lithium-ion battery composites[J]. CIESC Journal, 2017, 68(7): 2631-2640.
[1] | 汪晓芹, 廖晓兰, 周安宁. 聚苯胺及其复合材料研究现状[J]. 应用化学, 2001, 30(1): 4-8.WANG X Q, LIAO X L, ZHOU A N. Research advancement of polyaniline and its composites[J]. Applied Chemistry, 2001, 30(1): 4-8. |
[2] | LACROIX J C, DIAZ A F. Electrolyte effects on the switching reaction of polyaniline[J]. Journal of the Electrochemical Society, 1988, 135(6): 1457-1463. |
[3] | SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene (CH)x[J]. Journal of the Chemical Society, Chemical Communications, 1977, 16(16): 578-580. |
[4] | KAKUTA T, SHIROTA Y, MIKAWA H. A rechargeable battery using electrochemically doped poly(N-vinylcarbazole)[J]. Journal of the Chemical Society, Chemical Communications, 1985, 9(9): 553-554. |
[5] | 郭炳琨, 李新海, 杨松青. 化学电源——电池原理及制造技术[M]. 长沙: 中南大学出版社, 2003: 314-355.GOU B K, LI X H, YANG S Q. Chemical Power-Battery Principle and Manufacturing Technology[M]. Changsha: Central South University Press, 2001, 314-355. |
[6] | 张其锦, 翟焱. 聚苯胺的电化学合成实验[J]. 大学化学, 1998, 13(4): 41-43.ZHANG Q J, ZHAI Y. Electrochemical synthesis experiment of polyaniline[J]. University Chemistry, 1998, 13(4): 41-43. |
[7] | 穆绍林, 阚锦晴. 苯胺在碱性溶液中的电化学聚合和聚合物的性质[J]. 电化学, 1996, 2(1): 54-60.MU S L, KAN J Q. Electrochemical polymerization of aniline in the alkaline solution and properties of polymer[J]. Journal of Electrochemistry, 1996, 2(1): 54-60. |
[8] | 周震涛, 刘芳. (NH4)2S2O8体系聚苯胺合成, 结构与性能研究[J]. 华南理工大学学报(自然科学版), 1995, 23(2): 47-52.ZHOU Z T, LIU F. Studies on the synthesis, structure and properties of polyaniline in (NH4)2S2O8 system[J]. Journal of South China University of Technology(Natural Science Edition), 1995, 23(2): 47-52. |
[9] | 於黄中, 陈明光, 黄河. 不同类型的酸掺杂对聚苯胺结构和电导率的影响[J]. 华南理工大学学报(自然科学版), 2003, 31(5): 21-24.YU H Z, CHEN M G, HUANG H. Effect of different doping acids on the structures and conductivity of polyaniline[J]. Journal of South China University of Technology(Natural Science Edition), 2003, 31(5): 21-24. |
[10] | 杨兰生, 许锦茂, 单忠强, 等. 导电聚合物聚苯胺的化学合成[J]. 化学工业与工程, 1994, 11(2): 7-12.YANG L S, XU J M, SHAN Z Q, et al. The chemical synthesis of conducting polyaniline[J]. Chemical Industry and Engineering, 1994, 11(2): 7-12. |
[11] | DELIGOZ H, ILYLMAZTURK S, GUMUSOGLU T. Nanostructured membrane electrode assemblies from layer-by-layer composite/catalyst containing membranes and their fuel cell performances[J]. Journal of Applied Polymer Science, 2014, 131(11): 2928-2935. |
[12] | MEHDINIA A, FAZLOLLAH MOUSAVI M. Enhancing extraction rate in solid-phase microextraction by using nano-structured polyaniline coating[J]. Journal of Separation Science, 2008, 31(20): 3565-3572. |
[13] | HIGGINS T M, MOULTON S E, GILMORE K J, et al. Gellan gum doped polypyrrole neural prosthetic electrode coatings[J]. Soft Matter, 2011, 7(10): 4690-4695. |
[14] | GAWLI Y, BANERJEE A, DHAKRAS D, et al. 3D polyaniline architecture by concurrent inorganic and organic acid doping for superior and robust high rate supercapacitor performance[J]. Scientific Reports, 2016, 6: 1-10. |
[15] | LU X, DOU H, YANG S, et al. Fabrication and electro-chemical capacitance of hierarchical grapheme/polyaniline/carbon nanotube ternary composite film[J]. Electrochimica Acta, 2011, 56(25): 9224-9232. |
[16] | 包建军, 成煦, 何其佳, 等. 热处理过程中聚苯胺的结构变化[J]. 高分子材料科学与工程, 2004, 20(5): 121-124.BAO J J, CHENG X, HE Q J, et al. A study of polyaniline structure change undergoing heat treatment[J]. Polymer Materials Science and Engineering, 2004, 20(5): 121-124. |
[17] | 张爱勤, 张勇, 王力臻. 掺杂聚苯胺锂电池正极材料的性能研究[J]. 化工新型材料, 2008, 36(2): 19-20.ZHANG A Q, ZHANG Y, WANG L Z. Study of DBSA doped polyaniline used as cathode material for lithium cell[J]. New Chemical Materials, 2008, 36(2): 19-20. |
[18] | DONG R X, LIU C T, HUANG K C, et al. Controlling formation of silver/carbon nanotube networks for highly conductive film surface[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1449-1455. |
[19] | LI J, TANG X, LI H, et al. Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline[J]. Synthetic Metals, 2010, 160(11): 1153-1158. |
[20] | WANG Q, YAO Q, CHANG J, et al. Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains[J]. Journal of Materials Chemistry, 2012, 22(34): 17612-17618. |
[21] | 贾艺凡, 刘朝辉, 廖梓珺, 等. 导电聚苯胺的聚合方法及应用研究进展[J]. 材料开发与应用, 2016, 31(1): 97-104.JIA Y F, LIU Z H, LIAO Z J, et al. Progress in preparation and performance of conducting polyaniline[J]. Development and Application of Materials, 2016, 31(1): 97-104. |
[22] | 柳艳, 吉宁, 郭雪峰. 导电聚苯胺的制备方法及应用[J]. 化工中间体, 2009, (3): 4-9.LIU Y, JI N, GUO X F. The preparation and application of conducting polymer polyaniline[J]. Chemical Intermediate, 2009, (3): 4-9. |
[23] | BHADRA S, KHASTGIR D, SINGHA N K, et al. Progress in preparation, processing and applications of polyaniline[J]. Progress in Polymer Science, 2009, 34(8): 783-810. |
[24] | PONNUSWAMY V, ASHOKAN S, JAYAMURUGAN P, et al. Optical, thermal and morphological properties of PANI/P2O5 composites[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(1): 19-23. |
[25] | HUI Y, CAO L, XU Z, et al. In situ synthesis of core-shell Li4Ti5O12@polyaniline composites with enhanced rate performance for lithium-ion battery anodes[J]. Journal of Materials Science & Technology, 2017, 33(3): 231-238. |
[26] | ASHOKAN S, PONNUSWAMY V, JAYAMURUGAN P. Fabrication and characterization PANI/CuO hybrid films by nebulizer spray pyrolysis technique for diode applications[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2591-2595. |
[27] | IKKALA O, TIITU M, TANNER J, et al. Blends of thermoreversible gels of polyaniline with thermoplastic elastomers: Co-continuous melt processible polymer structures[J]. Synthetic Metals, 1999, 102(1/2/3): 1248-1249. |
[28] | CHEN W M, HUANG Y H, YUAN L X. Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2011, 660(1): 108-113. |
[29] | WANG D W, LI F, ZHAO J, et al. Fabrication of grapheme/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode[J]. ACS Nano, 2009, 3(7): 1745-1752. |
[30] | FENG X M, LI R M, MA Y W, et al. One-step electrochemical synthesis of grapheme/polyaniline composite film and its applications[J]. Advanced Functional Materials, 2011, 21(15): 2989-2996. |
[31] | 周婉秋, 王宇玲, 赵玉明, 等. 循环伏安法合成导电聚苯胺导电性及热稳定性[J]. 沈阳师范大学学报(自然科学版), 2017, 35(1): 29-33.ZHOU W Q, WANG Y L, ZHAO Y M, et al. Electrical conductivity and thermal stability of conductive polyaniline synthesized by cyclic voltammetry[J]. Journal of Shenyang Normal University (Natural Science Edition), 2017, 35(1): 29-33. |
[32] | FAN C L, OM H, ZHANG K H. Influence of conductive electroactive polymer polyaniline on electrochemical performance of LiMn1.95Al0.05O4 cathode for lithium ion batteries[J]. Bulletin of Materials Science, 2013, 36(6): 1005-1011. |
[33] | SEDENKOVA I, TRCHOVA M, DYBAL J, et al. Interaction of polyaniline film with dibutyl phosphonate versus phosphite: enhanced thermal stability[J]. Polymer Degradation and Stability, 2016, 134: 357-365. |
[34] | SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12. |
[35] | 梁庆钦. 锂离子电池金属氧化物电极材料的制备及性能研究[D]. 北京: 清华大学, 2011.LIANG Q Q. Metal oxide materials for lithium-ion batteries: synthesis and electrochemical performance[D]. Beijing: Tsinghua University, 2011. |
[36] | LI B, LI X, LI W, et al. Mesoporous tungsten trioxide polyaniline nanocomposite as an anode material for high-performance lithium-ion batteries[J]. ChemNanoMat, 2016, 2(4): 281-289. |
[37] | DUONG T T, TUAN T Q, DUNG D V A, et al. Application of polyaniline nanowires electrodeposited on the FTO glass substrate as a counter electrode for low-cost dye-sensitized solar cells[J]. Current Applied Physics, 2014, 14(12): 1607-1611. |
[38] | LAI C, ZHANG H Z, LI G R, et al. Mesoporous polyaniline/TiO2, microspheres with core-shell structure as anode materials for lithium ion battery[J]. Journal of Power Sources, 2011, 196(10): 4735-4740. |
[39] | WANG S, HU L, HU Y, et al. Conductive polyaniline capped Fe2O3, composite anode for high rate lithium ion batteries[J]. Materials Chemistry Physics, 2014, 146(3): 289-294. |
[40] | LIU Q, NAYFEH M H, YAU S T. Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite[J]. Journal of Power Sources, 2010, 195(12): 3956-3959. |
[41] | MI H, LI F, HE C, et al. Three-dimensional network structure of silicon-graphene-polyaniline composites as high performance anodes for lithium-ion batteries[J]. Electrochimica Acta, 2016, 190: 1032-1040. |
[42] | LIN H Y, LI C H, WANG D Y, et al. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode[J]. Nanoscale, 2016, 8(3): 1280-1287. |
[43] | WU J, ZHANG Q, ZHOU A, et al. Phase-separated polyaniline/ graphene composite electrodes for high-rate electrochemical supercapacitors[J]. Advanced Materials, 2016, 28(46): 10211-10216. |
[44] | ZHOU S, ZHANG H, ZHAO Q, et al. Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors[J]. Carbon, 2013, 52(2): 440-450. |
[45] | FAN W, ZHANG C, TJIU W W, et al. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications[J]. ACS Appl. Mater. Interfaces, 2013, 5(8): 3382-3391. |
[46] | ZHANG K, ZHANG L L, ZHAO X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chemistry of Materials, 2010, 22(4): 1392- 1401. |
[47] | LI J, XIE H, LI Y, et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors[J]. Journal of Power Sources, 2011, 196(24): 10775-10781. |
[48] | LI G, LI G, YE S, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials, 2012, 2(10): 1238-1245. |
[49] | 熊仕昭, 王华林, 洪晓斌. 聚苯胺包覆对锂硫电池电化学性能的影响[J]. 电源技术, 2011, 35(6): 678-680.XIONG S Z, WANG H L, HONG X B. Effect of water-soluble polyaniline coating on electrochemical properties of lithium-sulfur batteries[J]. Chinese Journal of Power Sources, 2011, 35(6): 678-680. |
[50] | 王志达. 碳-硫/聚苯胺正极材料制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.WANG Z D. Fabrication and electrochemical performance of C-S/PANI cathode material[D]. Harbin: Harbin Institute of Technology, 2015. |
[51] | LING A, SONG W, WEI P, et al. Polyaniline-wrapping hollow sulfur with MCM-41 template and improved capacity and cycling performance of lithium sulfur batteries[J]. Renewable Energy, 2016, 99: 289-294. |
[52] | WU F, CHEN J, LI L, et al. Improvement of rate and cycle performence by rapid polyaniline coating of a MWCNT/sulfur cathode[J]. Journal of Physical Chemistry C, 2011, 115(49): 24411-24417. |
[53] | ZHOU W, YU Y, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries [J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743. |
[54] | 李恒, 张丽鹏, 于先进. 锂离子电池正极材料的研究进展[J]. 硅酸盐通报, 2012, 31(6): 1486-1490.LI H, ZHANG L P, YU X J. Research progress for cathode materials of lithium ion battery[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(6): 1486-1490. |
[55] | 孙艳霞, 周园, 申月, 等. 动力型锂离子电池富锂三元正极材料研究进展[J]. 化学通报, 2017, 80(1): 34-40.SUN Y X, ZHOU Y, SHEN Y, et al. Lithium rich ternary cathode materials for dynamical type lithium ion battery[J]. Chemistry, 2017, 80(1): 34-40. |
[56] | ZENG L, FAN C. Structure of polyaniline and its influences on the electrochemical performance of LiCoO2 cathode for lithium ion batteries[J]. Asian Journal of Chemistry, 2013, 25(7):3553-3556. |
[57] | 范长岭. 导电聚合物PPy和PAn在锂离子电池正极中的应用[D]. 长沙: 湖南大学, 2012.FAN C L. The application of conductive polymers PPy and PAn in the positive electrode for lithium ion batteries[D]. Changsha: Hunan University, 2012. |
[58] | 张爱勤, 王力臻, 张志峰. 掺杂导电聚合物对LiMn2O4和LiCoO2电化学性能的影响[J]. 化工新型材料, 2005, 33(4): 29-30.ZHANG A Q, WNAG L Z, ZHANG Z F. The effect of conductive polymer doping on the electrochemical performance of LiMn2O4 and LiCoO2[J]. New Chemical Materials, 2005, 33(4): 29-30. |
[59] | 谌伟民. 聚苯胺、聚吡咯复合材料的制备及其在锂离子电池中的应用[D]. 武汉:华中科技大学, 2012.SHEN W M. Synthesis of polyaniline-based and polypyrrole-based composite materials and their applications in lithium-ion batteries[D]. Wuhan: Huazhong University of Science and Technology, 2012. |
[60] | JIANG Z. Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source[J]. Journal of Alloys and Compounds, 2012, 537(1): 308-317. |
[61] | SEHRAWAT R, SIL A. Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery[J]. Ionics, 2015, 21(3): 673-685. |
[62] | 苏畅, 黄启飞, 徐立环. C-LiFePO4/聚三苯胺复合锂离子电池正极材料的制备与性能[J]. 物理化学学报, 2014, 30(1): 88-94.SU C, HUANG Q F, XU L H. Preparation and performances of C-LiFePO4/polytriphenylamine composite as cathode material for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 88-94. |
[63] | YAN H, CHEN W, WU X, et al. Conducting polyaniline-wrapped lithium vanadium phosphate nano-composite as high-rate and cycling stability cathode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 146: 295-300. |
[64] | GAO X, WANG J, CHOU S, et al. Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery[J]. Journal of Power Sources, 2012, 220: 47-53. |
[65] | RAN L, DUARY J, SANG B. ChemInform abstract: heterogeneous nanostructured electrode materials for electrochemical energy storage[J]. Chemical Communications, 2011, 42(15): 1384-1404. |
[66] | 刘娜. 一种聚苯胺包覆锗掺杂锰酸锂复合正极材料的制备方法: 104466139A[P]. 2015-03-25.LIU N. A polyaniline coated germanium doping method of preparation of manganese acid lithium composite cathode material: 104466139A[P]. 2015-03-25. |
[67] | XUE Q, LI J, XU G, et al. In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18613-18623. |
[68] | LEE Y, YANG X, KARTHIKEYAN K, et al. Li(Mn1/3Ni1/3Fe1/3)O2-polyaniline hybrids as cathode active material with ultra-fast charge-discharge capability for lithium batteries[J]. Journal of Power Sources, 2013, 232: 240-245. |
[69] | 袁丰肖, 朱国辉, 毛卫民, 等. 导电聚苯胺的热稳定性[J]. 材料导报:网络版, 2006, (4): 22-24.YUAN F X, ZHU G H, MAO W M, et al. Thermal stability of conductive polyaniline[J]. Materials Review: Online, 2006, (4): 22-24. |
[70] | HAGIWARA T, YAMAURA M, IWATA K. Thermal stability of polyaniline[J]. Synthetic Metals, 1988, 25(3): 243-252. |
[71] | 邓姝皓, 陈军, 王之顺, 等. 热处理工艺对硫酸掺杂聚苯胺性能的影响[J]. 高分子材料科学与工程, 2010, 26(7): 109-113.DENG S H, CHEN J, WANG Z S, et al. Influence of heat treatment on performance of polyaniline doped by sulfuric acid[J]. Polymer Materials Science and Engineering, 2010, 26(7): 109-113. |
[72] | 刘燕琴, 毛倩瑾, 周美玲. 导电聚苯胺/纳米Fe3O4复合材料的制备及耐热性研究[J]. 材料工程, 2004, (9): 45-47.LIU Y Q, MAO Q J, ZHOU M L. Synthesis and thermal stability of composite of conducting polyaniline with Fe3O4 nanoparticles[J]. Material Engineering, 2004, (9): 45-47. |
[73] | BHADRA J, MADI N K, ALTHANI N J, et al. Polyaniline/polyvinyl alcohol blends: effect of sulfonic acid dopants on microstructural, optical, thermal and electrical properties[J]. Synthetic Metals, 2014, 191(9): 126-134. |
[74] | XIAO Z L, ZHOU Q Q, SONG L B, et al. Assessment of thermo-electrochemical performance on cathode materials for lithium ion cells[J]. Int. J. Electrochem. Sci., 2016, 11: 2825-2834. |
[75] | 肖忠良, 胡超明, 宋刘斌, 等. 正极材料 LiNi0.8Co0.1Mn0.1O2 的合成工艺优化及电化学性能[J]. 化工学报, 2017, 68(4): 1652-1659.XIAO Z L, HU C M, SONG L B, et al. Optimization for synthesis technology of LiNi0.8Co0.1Mn0.1O2 cathode material and electrochemical performance[J]. CIESC Journal, 2017, 68(4): 1652-1659. |
[76] | SONG L B, XIAO Z L, LI L J, et al. Thermo-electrochemical study on cathode materials for lithium ion cells[J]. Journal of Solid State Electrochemistry, 2015, 19(7): 2167-2175. |
[77] | XIAO Z L, ZHOU Y, SONG L B, et al. Thermal-electrochemical behaviors of LiMn2O4 lithium-ion cell studied by electrochemical calorimetric method[J]. Journal of Alloys and Compounds, 2014, 592: 226-230. |
[78] | SONG L B, LI L J, XIAO Z L, et al. Estimation of temperature distribution of LiFePO4 lithium ion battery during charge-discharge process[J]. Ionics, 2016, 22: 1517-1525.atteries[D]. Wuhan: Huazhong University of Science and Technology, 2012. |
[60] | JIANG Z. Effects of carbon content on the electrochmical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source[J]. Journal of Alloys and Compounds, 2012, 537(1): 308-317. |
[61] | SEHRAWAT R, SIL A. Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery[J]. Ionics, 2015, 21(3): 673-685. |
[62] | 苏畅, 黄启飞, 徐立环. C-LiFePO4/聚三苯胺复合锂离子电池正极材料的制备与性能[J]. 物理化学学报, 2014, 30(1): 88-94. SU C, HUANG Q F, XU L H. Preparation and performances of C-LiFePO4/polytriphenylamine composite as cathode material for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 88-94. |
[63] | YAN H, CHEN W, WU X, et al. Conducting polyaniline-wrapped lithium vanadium phosphate nano-composite as high-rate and cycling stability cathode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 146: 295-300. |
[64] | GAO X, WANG J, CHOU S, et al. Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery[J]. Journal of Power Sources, 2012, 220: 47-53. |
[65] | RAN L, DUARY J, SANG B. ChemInform abstract: Heterogeneous nanostructured electrode materials for electrochemical energy storage[J]. Chemical Communications, 2011, 42(15): 1384-1404. |
[66] | 刘娜. 一种聚苯胺包覆锗掺杂锰酸锂复合正极材料的制备方法: CN104466139A[P]. 2015-03-25. LIU N. A polyaniline coated germanium doping method of preparation of manganese acid lithium composite cathode material: CN104466139A[P]. 2015-03-25. |
[67] | XUE Q, LI J, XU G, et al. In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13] O2 with high rate capacity for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18613-18623. |
[68] | LEE Y, YANG X, KARTHIKEYAN K, et al. Li(Mn1/3Ni1/3Fe1/3)O2-Polyaniline hybrids as cathode active material with ultra-fast chargeedischarge capability for lithium batteries[J]. Journal of Power Sources, 2013, 232: 240-245. |
[69] | 袁丰肖, 朱国辉, 毛卫民, 等. 导电聚苯胺的热稳定性[J]. 材料导报:网络版, 2006, (4): 22-24. YUAN F X, ZHU G H, MAO W M, et al. Thermal stability of conductive polyaniline[J]. Materials Review: Online, 2006, (4): 22-24. |
[70] | HAGIWARA T, YAMAURA M, IWATA K. Thermal stability of polyaniline[J]. Synthetic Metals, 1988, 25(3): 243-252. |
[71] | 邓姝皓, 陈军, 王之顺, 等. 热处理工艺对硫酸掺杂聚苯胺性能的影响[J]. 高分子材料科学与工程, 2010, 26(7): 109-113. DENG S H, CHEN J, WANG Z S, et al. Influence of heat treatment on performance of polyaniline doped by sulfuric acid[J]. Polymer Materials Science and Engineering, 2010, 26(7): 109-113. |
[72] | 刘燕琴, 毛倩瑾, 周美玲. 导电聚苯胺/纳米Fe3O4复合材料的制备及耐热性研究[J]. 材料工程, 2004, (9): 45-47. LIU Y Q, MAO Q J, ZHOU M L. Synthesis and thermal stability of composite of conducting polyaniline with Fe3O4 nanoparticles[J]. Material Engineering, 2004, (9): 45-47. |
[73] | BHADRA J, MADI N K, ALTHANI N J, et al. Polyaniline/polyvinyl alcohol blends: Effect of sulfonic acid dopants on microstructural, optical, thermal and electrical properties[J]. Synthetic Metals, 2014, 191(9): 126-134. |
[74] | XIAO Z L, ZHOU Q Q, SONG L B, et al. Assessment of thermo-electrochemical performance on cathode materials for lithium ion cells[J]. Int. J. Electrochem. Sci., 2016, 11: 2825-2834. |
[75] | 肖忠良, 胡超明, 宋刘斌, 等. 正极材料LiNi0.8Co0.1Mn0.1O2的合成工艺优化及电化学性能[J]. 化工学报, 2017, 68(4): 1652-1659. XIAO Z L, HU C M, SONG L B, et al. Optimization for synthesis technology of LiNi0.8Co0.1Mn0.1O2 cathode material and electrochemical performance[J]. Journal of Chemical Industry and Engineering, 2017, 68(4): 1652-1659. |
[76] | SONG L B, XIAO Z L, LI L J, et al. Thermo-electrochemical study on cathode materials for lithium ion cells[J]. Journal of Solid State Electrochemistry, 2015, 19(7): 2167-2175. |
[77] | XIAO Z L, ZHOU Y, SONG L B, et al. Thermal-electrochemical behaviors of LiMn2O4 lithium-ion cell studied by electrochemical calorimetric method[J]. Journal of Alloys and Compounds, 2014, 592: 226-230. |
[78] | SONG L B, LI L J, XIAO Z L, et al. Estimation of temperature distribution of LiFePO4 lithium ion battery during charge-discharge process[J]. Ionics, 2016, 22: 1517-1525. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[9] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[10] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[11] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[12] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[13] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[14] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[15] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||