化工学报 ›› 2019, Vol. 70 ›› Issue (1): 161-169.DOI: 10.11949/j.issn.0438-1157.20180328
收稿日期:
2018-03-27
修回日期:
2018-06-12
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
赵钦新
作者简介:
潘佩媛(1991—),女,博士研究生,<email>ppy917@163.com</email>|赵钦新(1963—),男,博士,教授,<email>zhaoqx@xtju.edu.cn</email>
基金资助:
Peiyuan PAN(),Heng CHEN,Jian JIAO,Zhiyuan LIANG,Qinxin ZHAO()
Received:
2018-03-27
Revised:
2018-06-12
Online:
2019-01-05
Published:
2019-01-05
Contact:
Qinxin ZHAO
摘要:
基于提升排放烟羽高度以及排烟脱白的需求,必须对燃煤锅炉烟气湿法脱硫后的湿烟气进行妥当处理。但湿法脱硫后的湿烟气腐蚀性很强,将对下游设备造成严重腐蚀。本文在91 MW层燃供热锅炉湿法脱硫系统后烟道进行了现场腐蚀实验,测试和评估了5种钢材的耐腐蚀能力。实验结果表明,钢材的表面温度对腐蚀过程具有关键影响。随着表面温度的升高,钢材的腐蚀程度首先因为表面沉积物中氯离子浓度升高而加剧,然后因电解质的匮乏而减轻。
中图分类号:
潘佩媛, 陈衡, 焦健, 梁志远, 赵钦新. 湿法脱硫后烟气腐蚀现场实验研究[J]. 化工学报, 2019, 70(1): 161-169.
Peiyuan PAN, Heng CHEN, Jian JIAO, Zhiyuan LIANG, Qinxin ZHAO. In-plant experimental study on desulfurized flue gas corrosion[J]. CIESC Journal, 2019, 70(1): 161-169.
表压力/Pa | SO2/(mg?m?3) | NOx/(mg?m?3) | O2/%(vol) | 水蒸气/%(vol) | 温度/℃ | PM/(mg?m?3) |
---|---|---|---|---|---|---|
?1218~?724 | 32.3~67.9 | 147.8~192.2 | 4.3~6.8 | 7.4~10.5 | 45.4~51.1 | 9.1~13.7 |
表1 实验位置烟气参数
Table 1 Parameters of flue gas at testing position
表压力/Pa | SO2/(mg?m?3) | NOx/(mg?m?3) | O2/%(vol) | 水蒸气/%(vol) | 温度/℃ | PM/(mg?m?3) |
---|---|---|---|---|---|---|
?1218~?724 | 32.3~67.9 | 147.8~192.2 | 4.3~6.8 | 7.4~10.5 | 45.4~51.1 | 9.1~13.7 |
pH | 悬浮物/(mg?L?1) | Na+/(mg?L?1) | Ca2+/(mg?L?1) | Mg2+/(mg?L?1) | SO42?/(mg?L?1) | Cl?/(mg?L?1) | NO3?/(mg?L?1) |
---|---|---|---|---|---|---|---|
5.2 | 32288 | 630.0 | 699.2 | 1791 | 10318 | 2316 | 761.2 |
表2 循环浆液化学成分
pH | 悬浮物/(mg?L?1) | Na+/(mg?L?1) | Ca2+/(mg?L?1) | Mg2+/(mg?L?1) | SO42?/(mg?L?1) | Cl?/(mg?L?1) | NO3?/(mg?L?1) |
---|---|---|---|---|---|---|---|
5.2 | 32288 | 630.0 | 699.2 | 1791 | 10318 | 2316 | 761.2 |
实验钢材 | C | Si | Mn | P | S | Ni | Cr | Cu | Mo | N | Sb | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ND钢 | 0.078 | 0.26 | 0.48 | 0.012 | 0.010 | — | 0.90 | 0.37 | — | — | 0.060 | Bal. |
304L | 0.019 | 0.36 | 1.28 | 0.029 | 0.004 | 8.15 | 18.14 | 0.09 | — | — | — | Bal. |
316L | 0.020 | 0.40 | 1.45 | 0.018 | 0.002 | 10.73 | 16.97 | 0.12 | 2.47 | — | — | Bal. |
2205 | 0.016 | 0.37 | 1.12 | 0.026 | 0.001 | 5.74 | 22.06 | 0.24 | 3.13 | 0.17 | — | Bal. |
2507 | 0.018 | 0.25 | 0.77 | 0.015 | 0.001 | 7.08 | 25.18 | 0.21 | 3.89 | 0.27 | — | Bal. |
表3 实验钢材化学成分
Table 3 Chemical compositions of testing steels/%(mass)
实验钢材 | C | Si | Mn | P | S | Ni | Cr | Cu | Mo | N | Sb | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ND钢 | 0.078 | 0.26 | 0.48 | 0.012 | 0.010 | — | 0.90 | 0.37 | — | — | 0.060 | Bal. |
304L | 0.019 | 0.36 | 1.28 | 0.029 | 0.004 | 8.15 | 18.14 | 0.09 | — | — | — | Bal. |
316L | 0.020 | 0.40 | 1.45 | 0.018 | 0.002 | 10.73 | 16.97 | 0.12 | 2.47 | — | — | Bal. |
2205 | 0.016 | 0.37 | 1.12 | 0.026 | 0.001 | 5.74 | 22.06 | 0.24 | 3.13 | 0.17 | — | Bal. |
2507 | 0.018 | 0.25 | 0.77 | 0.015 | 0.001 | 7.08 | 25.18 | 0.21 | 3.89 | 0.27 | — | Bal. |
循环水温度 | 类型 | Fe | Cr | Ni | O | S | Cl | Ca | Al | Si | Mg |
---|---|---|---|---|---|---|---|---|---|---|---|
50℃ | ND钢表面沉积物 | 14.69 | — | — | 56.13 | 14.42 | — | 13.23 | 0.87 | 0.66 | — |
ND钢表面腐蚀产物 | 51.37 | — | — | 35.15 | 13.48 | — | — | — | — | — | |
2205表面沉积物 | — | — | — | 49.58 | 20.80 | — | 24.64 | 2.65 | 2.33 | — | |
60℃ | ND钢表面沉积物 | 16.86 | — | — | 39.34 | 12.44 | 9.73 | 15.46 | 0.73 | 1.16 | 4.28 |
ND钢表面腐蚀产物 | 53.78 | — | — | 28.60 | 3.56 | 12.91 | — | — | — | 1.15 | |
304L表面沉积物 | 8.48 | 2.33 | 1.07 | 29.18 | 17.02 | 10.03 | 22.69 | — | 2.37 | 6.83 | |
304L表面腐蚀产物 | 41.54 | 11.62 | 3.83 | 19.73 | 2.37 | 13.26 | 2.78 | — | 4.87 | ||
316L表面沉积物 | 4.89 | — | — | 52.83 | 15.18 | 2.32 | 19.88 | — | 3.68 | 1.22 | |
316L表面腐蚀产物 | 50.80 | 9.04 | 3.86 | 18.53 | 3.97 | 7.54 | 2.06 | — | 1.02 | 3.18 | |
2205表面沉积物 | 49.23 | 9.64 | 4.24 | 16.74 | 5.94 | 9.13 | 4.08 | — | — | 1.41 | |
2507表面腐蚀产物 | 6.37 | 1.33 | — | 40.28 | 15.35 | 8.96 | 19.73 | 1.49 | 2.51 | 3.98 | |
70℃ | ND钢表面沉积物 | 7.45 | — | — | 38.15 | 14.50 | 13.52 | 19.11 | 0.67 | 1.46 | 5.14 |
ND钢表面腐蚀产物 | 51.71 | — | — | 32.36 | 3.76 | 8.89 | — | — | — | 3.28 | |
304L表面沉积物 | 4.74 | — | — | 43.34 | 14.88 | 14.46 | 16.21 | — | — | 6.37 | |
304L表面腐蚀产物 | 43.84 | 11.58 | 3.03 | 18.88 | 1.00 | 14.54 | — | — | 1.90 | 5.23 | |
316L表面沉积物 | 3.47 | — | — | 38.34 | 16.29 | 12.02 | 19.87 | 2.73 | 1.94 | 5.34 | |
316L表面腐蚀产物 | 43.38 | 8.33 | 2.91 | 30.93 | 4.02 | 10.43 | — | — | — | — | |
2205表面腐蚀产物 | 42.29 | 8.25 | 3.97 | 18.24 | 5.35 | 10.60 | 7.94 | 1.41 | |||
80℃ | ND钢表面沉积物 | 6.86 | — | — | 46.55 | 19.56 | 5.74 | 18.91 | 0.57 | 0.55 | 1.26 |
ND钢表面腐蚀产物 | 61.38 | — | — | 28.84 | 3.02 | 6.76 | |||||
316L表面沉积物 | 11.51 | — | — | 45.63 | 11.32 | 3.28 | 17.03 | 2.11 | 4.18 | 4.94 |
表4 钢材表面沉积物和腐蚀产物的成分
Table 4 Composition of deposits and corrosion products on steel surfaces/% (mass)
循环水温度 | 类型 | Fe | Cr | Ni | O | S | Cl | Ca | Al | Si | Mg |
---|---|---|---|---|---|---|---|---|---|---|---|
50℃ | ND钢表面沉积物 | 14.69 | — | — | 56.13 | 14.42 | — | 13.23 | 0.87 | 0.66 | — |
ND钢表面腐蚀产物 | 51.37 | — | — | 35.15 | 13.48 | — | — | — | — | — | |
2205表面沉积物 | — | — | — | 49.58 | 20.80 | — | 24.64 | 2.65 | 2.33 | — | |
60℃ | ND钢表面沉积物 | 16.86 | — | — | 39.34 | 12.44 | 9.73 | 15.46 | 0.73 | 1.16 | 4.28 |
ND钢表面腐蚀产物 | 53.78 | — | — | 28.60 | 3.56 | 12.91 | — | — | — | 1.15 | |
304L表面沉积物 | 8.48 | 2.33 | 1.07 | 29.18 | 17.02 | 10.03 | 22.69 | — | 2.37 | 6.83 | |
304L表面腐蚀产物 | 41.54 | 11.62 | 3.83 | 19.73 | 2.37 | 13.26 | 2.78 | — | 4.87 | ||
316L表面沉积物 | 4.89 | — | — | 52.83 | 15.18 | 2.32 | 19.88 | — | 3.68 | 1.22 | |
316L表面腐蚀产物 | 50.80 | 9.04 | 3.86 | 18.53 | 3.97 | 7.54 | 2.06 | — | 1.02 | 3.18 | |
2205表面沉积物 | 49.23 | 9.64 | 4.24 | 16.74 | 5.94 | 9.13 | 4.08 | — | — | 1.41 | |
2507表面腐蚀产物 | 6.37 | 1.33 | — | 40.28 | 15.35 | 8.96 | 19.73 | 1.49 | 2.51 | 3.98 | |
70℃ | ND钢表面沉积物 | 7.45 | — | — | 38.15 | 14.50 | 13.52 | 19.11 | 0.67 | 1.46 | 5.14 |
ND钢表面腐蚀产物 | 51.71 | — | — | 32.36 | 3.76 | 8.89 | — | — | — | 3.28 | |
304L表面沉积物 | 4.74 | — | — | 43.34 | 14.88 | 14.46 | 16.21 | — | — | 6.37 | |
304L表面腐蚀产物 | 43.84 | 11.58 | 3.03 | 18.88 | 1.00 | 14.54 | — | — | 1.90 | 5.23 | |
316L表面沉积物 | 3.47 | — | — | 38.34 | 16.29 | 12.02 | 19.87 | 2.73 | 1.94 | 5.34 | |
316L表面腐蚀产物 | 43.38 | 8.33 | 2.91 | 30.93 | 4.02 | 10.43 | — | — | — | — | |
2205表面腐蚀产物 | 42.29 | 8.25 | 3.97 | 18.24 | 5.35 | 10.60 | 7.94 | 1.41 | |||
80℃ | ND钢表面沉积物 | 6.86 | — | — | 46.55 | 19.56 | 5.74 | 18.91 | 0.57 | 0.55 | 1.26 |
ND钢表面腐蚀产物 | 61.38 | — | — | 28.84 | 3.02 | 6.76 | |||||
316L表面沉积物 | 11.51 | — | — | 45.63 | 11.32 | 3.28 | 17.03 | 2.11 | 4.18 | 4.94 |
图9 不同循环水温度条件下72 h腐蚀实验后ND钢表面的腐蚀层的平均厚度
Fig.9 Average thicknesses of corrosion layers of ND steel after 72 h corrosion tests at different circulating water temperatures
1 | SrivastavaR K, JozewiczW. Flue gas desulfurization: the state of the art[J]. Journal of the Air & Waste Management Association, 2001, 51(12): 1676-1688. |
2 | 赵钦新. 我国工业锅炉发展回顾与“十二五”展望[J]. 工业锅炉, 2011, (6): 1-8. |
ZhaoQ X. Reviews and prospects in China s industrial boiler development[J]. Industrial Boiler, 2011, (6): 1-8. | |
3 | 李文艳, 王冀星, 车建炜. 湿法脱硫烟气湿排问题分析[J]. 中国电机工程学报, 2007, 27(14): 36-40. |
LiW Y, WangJ X, CheJ W. Analysis on corresponding problems of WFGD flue gas wet emission[J]. Proceedings of the CSEE, 2007, 27(14): 36-40. | |
4 | 马修元, 惠润堂, 杨爱勇, 等. 湿烟羽形成机理与消散技术数值分析[J]. 科学技术与工程, 2017, 17(22): 220-224. |
MaX Y, HuiR T, YangA Y, et al. Numerical analysis of wet plume formation mechanism and dissipation technique[J]. Science Technology and Engineering, 2017, 17(22): 220-224. | |
5 | 马修元, 惠润堂, 杨爱勇. 湿烟羽消散技术对污染物扩散特性的影响[J]. 环境工程技术学报, 2017, 7(5): 533-538. |
MaX Y, HuiR T, YangA Y. Effects of wet plume elimination technology on pollutants diffusion[J]. Journal of Environmental Engineering Technology, 2017, 7(5): 533-538. | |
6 | 顾咸志. 湿法烟气脱硫装置烟气换热器的腐蚀及预防[J]. 中国电力, 2006, 39(2): 86-91. |
GuX Z. Corrosion and protection on the GGH of flue gas desulphurization equipment[J]. Electric Power, 2006, 39(2): 86-91. | |
7 | 刘宇钢, 罗志忠, 陈刚, 等. 低温省煤器及MGGH运行中存在典型问题分析及对策[J]. 东方电气评论, 2016, 30(2): 31-35. |
LiuY G, LuoZ Z, ChenG, et al. Cause analyses on typical operational problems of low temperature economizer and MGGH and proposed countermeasures[J]. Dongfang Electric Review, 2016, 30(2): 31-35. | |
8 | DarowickiK, KrakowiakS. Durability evaluation of Ni-Cr-Mo super alloys in a simulated scrubbed flue gas environment[J]. Anti-Corrosion Methods and Materials, 1999, 46(1): 19-22. |
9 | CrumJ R, ShoemakerL E, StiltnerG. The role of nickel alloys in fighting corrosion in wet limestone FGD systems[C]//CORROSION 96, NACE International, 1996. |
10 | JansenP, HansenV, JensenT. Corrosion experience with carbon steel in spray absorption FGD plant[J]. Materials & Corrosion, 1992, 43(6): 310-315. |
11 | DahlL. Corrosion in flue gas desulfurization plants and other low temperature equipment[J]. Materials & Corrosion, 1992, 43(6): 298-304. |
12 | ShoemakerL E, CrumJ R. Experience in effective application of metallic materials for construction of FGD systems[R]. Special Metals, 2010. |
13 | PetterssonR, EkmanS, BergquistA, et al. Corrosion of austenitic and duplex stainless steels in flue gas cleaning systems for waste combustion processes[C]//CORROSION 2013. NACE International, 2013. |
14 | 赵阳, 梁磊, 张建良, 等. 湿法脱硫烟气系统腐蚀环境及ND钢与316L不锈钢的耐蚀性能比较[J]. 上海电力学院学报, 2016, 32(3): 216-220. |
ZhaoY, LiangL, ZhangJ L, et al. Flue gas wet desulphurization system corrosion environment and the comparison of ND steel and 316L corrosion resistance[J]. Journal of Shanghai University of Electric Power, 2016, 32(3): 216-220. | |
15 | KimM T, ChangS Y, OhO Y, et al. Failure analysis of enamel-coated carbon steel heating elements of gas-gas heater for flue gas desulfurization system[J]. Engineering Failure Analysis, 2007, 14(4): 686-693. |
16 | PanP Y, ChenH, LiangZ Y, et al. Experimental study on corrosion of steels for flue gas reheaters in a coal-fired power plant[J]. Applied Thermal Engineering, 2017, 115: 267-279. |
17 | 赵钦新, 周屈兰. 工业锅炉节能减排现状、存在问题及对策[J]. 工业锅炉, 2010, (1): 1-6. |
ZhaoQ X, ZhouQ L. Solutions, questions and status of China s industrial boiler[J]. Industrial Boiler, 2010, (1): 1-6. | |
18 | 赵钦新, 杨文君, 孙一睿, 等. 燃煤工业锅炉污染物协同治理关键技术[J]. 工业锅炉, 2015, (6): 1-9. |
ZhaoQ X, YangW J, SunY R, et al. Key technologies of multi-pollutants synergia control in coa1-fired industrial boiler[J]. Industrial Boiler, 2015, (6): 1-9. | |
19 | 莫华, 朱杰, 黄志杰, 等. 超低排放下不同湿法脱硫技术脱除SO3效果测试与分析[J]. 中国电力, 2017, 50(3): 46-50. |
MoH, ZhuJ, HuangZ J, et al. Test and study on SO3 removal performance of different wet flue gas desulfurization technologies at ultra-low pollutants emission[J]. Electric Power, 2017, 50(3): 46-50. | |
20 | ÅmandL E, BoL, EskilssonD, et al. Deposits on heat transfer tubes during co-combustion of biofuels and sewage sludge[J]. Fuel, 2006, 85(10): 1313-1322. |
21 | LiuK, XieW, LiD, et al. The effect of chlorine and sulfur on the composition of ash deposits in a fluidized bed combustion system[J]. Theriogenology, 2000, 54(5): 757-769. |
22 | YamashitaM, KonishiH, KozakuraT, et al. In situ observation of initial rust formation process on carbon steel under NaSO and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays[J]. Corrosion Science, 2005, 47(10): 2492-2498. |
23 | TsutsumiY, NishikataA, TsuruT. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions[J]. Corrosion Science, 2007, 49(3): 1394-1407. |
24 | JinZ H, GeH H, LinW W, et al. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution[J]. Applied Surface Science, 2014, 322: 47-56. |
25 | LeeJ S, FushimiK, NakanishiT, et al. Corrosion behaviour of ferrite and austenite phases on super duplex stainless steel in a modified green-death solution[J]. Corrosion Science, 2014, 89(89): 111-117. |
26 | WangY, WangW, LiuY, et al. Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode[J]. Corrosion Science, 2011, 53(9): 2963-2968. |
27 | MaY, LiY, WangF. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009, 51(5): 997-1006. |
28 | NishimuraT. Electrochemical behaviour and structure of rust formed on Si- and Al-bearing steel after atmospheric exposure[J]. Corrosion Science, 2010, 52(11): 3609-3614. |
29 | RémazeillesC, RefaitP. On the formation of β-FeOOH (akaganéite) in chloride-containing environments[J]. Corrosion Science, 2007, 49(2): 844-857. |
30 | CorvoF, BetancourtN, MendozaA. The influence of airborne salinity on the atmospheric corrosion of steel[J]. Corrosion Science, 1995, 37(12): 1889-1901. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[5] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[6] | 时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
[7] | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
[8] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[9] | 魏小兰, 戚文杰, 丁静, 陆建峰, 王维龙, 刘书乐. 氯化物熔盐中铬的价态对镍基合金腐蚀性的影响[J]. 化工学报, 2022, 73(7): 3182-3192. |
[10] | 何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129. |
[11] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
[12] | 李雪, 东明, 张璜, 谢俊. 潮湿环境下微尺度颗粒撞击平板的动力学研究[J]. 化工学报, 2022, 73(5): 1940-1946. |
[13] | 刘轩, 苏银皎, 滕阳, 张锴, 王鹏程, 李丽锋, 李圳. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932. |
[14] | 白浩隆, 付亮亮, 许光文, 白丁荣. 流化床煤燃烧过程不同气氛下的气态氮释放特征[J]. 化工学报, 2022, 73(2): 876-886. |
[15] | 苏国庆, 张建文, 李彦. 蝶阀后管线腐蚀发生与发展机制研究[J]. 化工学报, 2022, 73(12): 5504-5516. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||