化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4505-4517.DOI: 10.11949/j.issn.0438-1157.20180983
龚俊波1,2, 孙杰1,2, 王静康1,2
收稿日期:
2018-09-04
修回日期:
2018-10-16
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
龚俊波
基金资助:
国家自然科学基金项目(91634117)。
GONG Junbo1,2, SUN Jie1,2, WANG Jingkang1,2
Received:
2018-09-04
Revised:
2018-10-16
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (91634117).
摘要:
工业结晶是一门“半艺术的科学”,具有多目标、非线性和强耦合的特点,在国际上被公认是最难设计的化工单元操作之一。面向智能制造发展的重大战略需求和历史机遇,基于国内外对工业结晶和智能制造的研究现状,拟构建基于智能制造的工业结晶多尺度研究框架。结合相关案例,总结了国内外人工智能、云计算、物联网等核心智能制造技术在工业结晶中的应用,重点分析讨论在溶解度预测、晶型预测、晶习预测、共晶预测与智能制造的发展现状和潜在结合点;总结了结晶过程中的感知、分析、决策的智能控制技术。
中图分类号:
龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69(11): 4505-4517.
GONG Junbo, SUN Jie, WANG Jingkang. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11): 4505-4517.
[1] | 周济. 智能制造——"中国制造2025"的主攻方向[J]. 中国机械工程, 2015, 26(17):2273-2284. ZHOU J. Intelligent manufacturing-main direction of "made in China 2025"[J].China Mechanical Engineering, 2015, 26(17):2273-2284. |
[2] | JONES A G. Crystallization Process Systems[M]. Elsevier, 2002. |
[3] | 龚俊波, 陈明洋, 黄翠, 等. 面向清洁生产的制药结晶[J]. 化工学报, 2015, 66(9):3271-3278. GONG J B, CHEN M Y, HUANG C, et al. Clean production of pharmaceutical crystallization[J]. CIESC Journal, 2015, 66(9):3271-3278. |
[4] | WANG J, XU A, XU R. Solubility of 2-nitro-p -phenylenediamine in nine pure solvents and mixture of(methanol +N-methyl-2-pyrrolidone) from T=(283.15 to 318.15) K:determination and modelling[J]. Journal of Chemical Thermodynamics, 2017, 108:45-58. |
[5] | CHEN G, CHEN J, CHENG C, et al. Solubility determination and thermodynamic modelling of 2-amino-5-methylthiazole in eleven organic solvents from T=(278.15 to 313.15) K and mixing properties of solutions[J]. Journal of Molecular Liquids, 2017, 232:226-235. |
[6] | KOROTCOV A, TKACHENKO V, RUSSO D P, et al. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets[J]. Molecular Pharmaceutics, 2017, 14(12):4462-4475. |
[7] | BOUILLOT B, TEYCHENÉ S, BISCANS B. An evaluation of thermodynamic models for the prediction of drug and drug-like molecule solubility in organic solvents[J]. Fluid Phase Equilibria, 2011, 309(1):36-52. |
[8] | SKYNER R E, MCDONAGH J L, GROOM C R, et al. A review of methods for the calculation of solution free energies and the modelling of systems in solution.[J]. Physical Chemistry Chemical Physics, 2015, 17(9):6174-6191. |
[9] | LUSCI A, POLLASTRI G, BALDI P. Deep architectures and deep learning in chemoinformatics:the prediction of aqueous solubility for drug-like molecules[J]. Journal of Chemical Information & Modeling, 2013, 53(7):1563-1575. |
[10] | SHAYANFAR A, FAKHREE M A A, JOUYBAN A. A simple QSPR model to predict aqueous solubility of drugs[J]. Journal of Drug Delivery Science & Technology, 2010, 20(6):467-476. |
[11] | LEACH A R, GILLET V J. An Introduction to Chemoinformatics[M]. Kluwer Academic Publishers, 2007. |
[12] | PORTUGAL I, ALENCAR P, COWAN D. The use of machine learning algorithms in recommender systems:a systematic review[J]. Expert Systems with Applications, 2018, 97:205-227. |
[13] | PALMER D S, NOEL M O, AND R C G, et al. Random forest models to predict aqueous solubility[J]. Journal of Chemical Information & Modeling, 2007, 47(1):150. |
[14] | WU K, ZHAO Z, WANG R, et al. TopP-S:persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility[J]. Journal of Computational Chemistry, 2018, 39(20):1444-1454. |
[15] | WU Z, RAMSUNDAR B, FEINBERG E N, et al. MoleculeNet:a benchmark for molecular machine learning[J]. Chemical Science, 2017, 9(2):513-530. |
[16] | ERI?A S, POPOVI? A, ZLOH M, et al. Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks[J]. International Journal of Pharmaceutics, 2012, 437(1/2):232-241. |
[17] | LUSCI A, POLLASTRI G, BALDI P. Deep architectures and deep learning in chemoinformatics:the prediction of aqueous solubility for drug-like molecules[J]. Journal of Chemical Information & Modeling, 2013, 53(7):1563-1575. |
[18] | MCDONAGH J L, NATH N, FERRARI L D, et al. Uniting cheminformatics and chemical theory to predict the intrinsic aqueous solubility of crystalline druglike molecules[J]. Journal of Chemical Information & Modeling, 2014, 54(3):844. |
[19] | LOUIS B, AGRAWAL V K, KHADIKAR P V. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses[J]. European Journal of Medicinal Chemistry, 2010, 45(9):4018-4025. |
[20] | LUSCI A, POLLASTRI G, BALDI P. Deep architectures and deep learning in chemoinformatics:the prediction of aqueous solubility for drug-like molecules[J]. Journal of Chemical Information & Modeling, 2013, 53(7):1563-1575. |
[21] | BOOBIER S, OSBOURN A, MITCHELL J. Can human experts predict solubility better than computers?[J]. J. Cheminform, 2017, 9(1):63. |
[22] | HOU J, WU S, LI R, et al. The induction time, interfacial energy and growth mechanism of maltitol in batch cooling crystallization[J]. Crystal Research and Technology, 2012, 8(47):888-895. |
[23] | HULME A T, PRICE S L, TOCHER D A. A new polymorph of 5-fluorouracil found following computational crystal structure predictions[J]. Journal of the American Chemical Society, 2005, 127(4):1116-1117. |
[24] | NEUMANN M A, PERRIN M. Can crystal structure prediction guide experimentalists to a new polymorph of paracetamol?[J]. CrystEngComm, 2009, 11(11):2475. |
[25] | GROOM C R, REILLY A M. Sixth blind test of organic crystal-structure prediction methods[J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2014, 70(4):776-777. |
[26] | OLIYNYK A O, ADUTWUM L A, RUDYK B W, et al. Disentangling structural confusion through machine learning:structure prediction and polymorphism of equiatomic ternary phases ABC[J]. Journal of the American Chemical Society, 2017, 139(49):17870-17881. |
[27] | ARTRITH N, URBAN A. An implementation of artificial neural-network potentials for atomistic materials simulations:performance for TiO2[J]. Computational Materials Science, 2016, 114:135-150. |
[28] | FELIX MUSIL S D J Y. Machine learning for the structure-energy-property landscapes of molecular crystals electronic supplementary information[J]. Chemical Science, 2018, 5(9):1289-1300. |
[29] | CAI Z, LIU Y, SONG Y, et al. The effect of tailor-made additives on crystal growth of methyl paraben:experiments and modelling[J]. Journal of Crystal Growth, 2017, 461:1-9. |
[30] | AL-JIBBOURI S, STREGE C, ULRICH J. Crystallization kinetics of epsomite influenced by pH-value and impurities[J]. Journal of Crystal Growth, 2002, 236(1):400-406. |
[31] | SRIRAMBHATLA V K, GUO R, PRICE S L, et al. Isomorphous template induced crystallisation:a robust method for the targeted crystallisation of computationally predicted metastable polymorphs[J]. Chemical Communications, 2016, 52(46):7384-7386. |
[32] | PADRELA L, ZEGLINSKI J, RYAN K M. Insight into the role of additives in controlling polymorphic outcome:a CO2-antisolvent crystallization process of carbamazepine[J]. Crystal Growth & Design, 2017, 17(9):4544-4553. |
[33] | WEISSBUCH I, TORBEEV V Y, LEISEROWITZ L, et al. Solvent effect on crystal polymorphism:why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable beta form of glycine[J]. Angewandte Chemie International Edition, 2005, 44(21):3226-3229. |
[34] | BRAVAIS A. Études Crystallographic[M]. Paris:Gauthier-Villars, 1866. |
[35] | DONNAY J D H. A new law of crystal morphology extending the law of Bravais[J]. Amer. Mineral, 1937, 22:446-467. |
[36] | HARTMAN P, BENNEMA P. The attachment energy as a habit controlling factor(Ⅰ):Theoretical considerations[J]. Journal of Crystal Growth, 1980, 49(1):145-156. |
[37] | ZHANG C, JI C, LI H, et al. Occupancy model for predicting the crystal morphologies influenced by solvents and temperature, and its application to nitroamine explosives[J]. Crystal Growth & Design, 2012, 13(1):282-290. |
[38] | MARKOV I V. Crystal Growth for Beginners[M]. World Scientific Europe, 1995:355. |
[39] | DEIJ M A, CUPPEN H M, MEEKES H, et al. Steps on surfaces in modeling crystal growth[J]. Crystal Growth & Design, 2007, 7(10):1936-1942. |
[40] | DEIJ M A, MEEKES H, VLIEG E. The step energy as a habit controlling factor: application to the morphology prediction of aspartame, venlafaxine, and a yellow isoxazolone dye[J]. Crystal Growth & Design, 2007, 7(10):1949-1957. |
[41] | SNYDER R C, DOHERTY M F. Predicting crystal growth by spiral motion[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2009, 465(2104):1145-1171. |
[42] | TILBURY C J, GREEN D A, MARSHALL W J, et al. Predicting the effect of solvent on the crystal habit of small organic molecules[J]. Crystal Growth & Design, 2016, 16(5):2590-2604. |
[43] | TILBURY C J, GREEN D A, MARSHALL W J, et al. Predicting the effect of solvent on the crystal habit of small organic molecules[J]. Crystal Growth & Design, 2016, 16(5):2590-2604. |
[44] | LOVETTE M A, DOHERTY M F. Predictive modeling of supersaturation-dependent crystal shapes[J]. Crystal Growth & Design, 2012, 12(2):656-669. |
[45] | SHIM H, KOO K. Prediction of growth habit of b-cyclotetramethylene-tetranitramine crystals by the first-principles models[J]. Crystal Growth & Design, 2015, 15(8):3983-3991. |
[46] | SHIM H, KOO K. Molecular approach to the effect of interfacial energy on growth habit of e-HNIW[J]. Crystal Growth & Design, 2016, 16(11):6506-6513. |
[47] | TILBURY C J, GREEN D A, MARSHALL W J, et al. Predicting the effect of solvent on the crystal habit of small organic molecules[J]. Crystal Growth & Design, 2016, 16(5):2590-2604. |
[48] | TILBURY C J, JOSWIAK M N, PETERS B, et al. Modeling step velocities and edge surface structures during growth of non-centrosymmetric crystals[J]. Crystal Growth & Design, 2017, 17(4):2066-2080. |
[49] | NIEH R S, ULRICH J. Designing crystal morphology by a simple approach[J]. Crystal Research and Technology, 1995, 30(3):389-395. |
[50] | SCHMIDT C, ULRICH J. Crystal habit prediction-including the liquid as well as the solid side[J]. Crystal Research and Technology, 2012, 47(6):597-602. |
[51] | SCHMIDT C, ULRICH J. Morphology prediction of crystals grown in the presence of impurities and solvents-an evaluation of the state of the art[J]. Journal of Crystal Growth, 2012, 353(1):168-173. |
[52] | WINN D, DOHERTY M F. Modeling crystal shapes of organic materials grown from solution[J]. AIChE Journal, 2010, 46(7):1348-1367. |
[53] | SEGLER M H S, PREUSS M, WALLER M P. Planning chemical syntheses with deep neural networks and symbolic AI[J]. Nature, 2018, 555(7698):604-610. |
[54] | SANPHUI P, GOUD N R, KHANDAVILLI U B R, et al. Fast dissolving curcumin cocrystals[J]. Crystal Growth & Design, 2011, 11(9):4135-4145. |
[55] | CHOW S F, SHI L, NG W W, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol[J]. Crystal Growth & Design, 2014, 14(10):5079-5089. |
[56] | KULESHOVA L N, HOFMANN D W M, BOESE R. Lattice energy calculation-a quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids[J]. Chemical Physics Letters, 2013, 564(12):26-32. |
[57] | HOFMANN D W M, APOSTOLAKIS J. Crystal structure prediction by data mining[J]. Journal of Molecular Structure, 2003, 647(1):17-39. |
[58] | HONG C, XIE Y, YAO Y, et al. A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio:myricetin cocrystals and a ternary phase diagram[J]. Pharmaceutical Research, 2015, 32(1):47-60. |
[59] | JUNG I H, KIM J. Thermodynamic modeling of the Mg-Ge-Si, Mg-Ge-Sn, Mg-Pb-Si and Mg-Pb-Sn systems[J]. Journal of Alloys & Compounds, 2010, 494(1):137-147. |
[60] | ABRAMOV Y A, LOSCHEN C, KLAMT A. Rational coformer or solvent selection for pharmaceutical cocrystallization or desolvation[J]. Journal of Pharmaceutical Sciences, 2012, 101(10):3687-3697. |
[61] | LOSCHEN C, KLAMT A. Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering[J]. J. Pharm. Pharmacol., 2015, 67(6):803-811. |
[62] | LANGE L, SADOWSKI G. Thermodynamic modeling for efficient cocrystal formation[J]. Crystal Growth & Design, 2015, 15(9):4406-4416. |
[63] | PERLOVICH G L. Thermodynamic characteristics of cocrystal formation and melting points for rational design of pharmaceutical two-component systems[J]. Crystengcomm, 2015, 17(37):7019-7028. |
[64] | KARAMERTZANIS P G, KAZANTSEV A V, ISSA N, et al. Can the formation of pharmaceutical cocrystals be computationally predicted?(Ⅱ):Crystal structure prediction[J]. Journal of Chemical Theory & Computation, 2009, 5(5):1432. |
[65] | GAMIDI R K, RASMUSON Å C. Estimation of melting temperature of molecular co-crystals using artificial neural network model[J]. Crystal Growth & Design, 2017, 17(1):175-182. |
[66] | WICKER J, CROWLEY L, ROBSHAW O, et al. Will they co-crystallize?[J]. Crystengcomm, 2017, 19(36):5336-5340. |
[67] | GIEGÉ R. A historical perspective on protein crystallization from 1840 to the present day[J]. FEBS Journal, 2013, 280(24):6456-6497. |
[68] | 王岸娜, 苏子豪, 吴立根, 等. 蛋白质结晶研究进展[J]. 河南工业大学学报(自然科学版), 2014, 35(5):107-115. WANG A N, SU Z H, WU L G, et al. Research progress in protein crystallization[J]. Journal of Henan University of Technology(Natural Science Edition), 2014, 35(5):107-115. |
[69] | SLABINSKI L, JAROSZEWSKI L, RYCHLEWSKI L, et al. XtalPred:a web server for prediction of protein crystallizability[J]. Bioinformatics, 2007, 23(24):3403-3405. |
[70] | SMIALOWSKI P, SCHMIDT T, COX J, et al. Will my protein crystallize? A sequence-based predictor[J]. Proteins Structure Function & Bioinformatics, 2010, 62(2):343-355. |
[71] | PRICE Ⅱ W N, CHEN Y, HANDELMAN S K, et al. Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data[J]. Nature Biotechnology, 2009, 27(1):51-57. |
[72] | CHEN K, KURGAN L, RAHBARI M. Prediction of protein crystallization using collocation of amino acid pairs[J]. Biochemical and Biophysical Research Communications, 2007, 355(3):764-769. |
[73] | CHAROENKWAN P, SHOOMBUATONG W, LEE H C, et al. SCMCRYS:predicting protein crystallization using an ensemble scoring card method with estimating propensity scores of P-collocated amino acid pairs[J]. Plos One, 2013, 8(9):e72368. |
[74] | OVERTON I M, PADOVANI G, GIROLAMI M A, et al. ParCrys:a Parzen window density estimation approach to protein crystallization propensity prediction[J]. Bioinformatics, 2008, 24(7):901-907. |
[75] | OVERTON I M, BARTON G J. A normalised scale for structural genomics target ranking:the OB-Score[J]. FEBS Letters, 2006, 580(16):4005-4009. |
[76] | CHAYEN N E. Turning protein crystallisation from an art into a science[J]. Current Opinion in Structural Biology, 2004, 14(5):577-583. |
[77] | DELGADO-FRIEDRICHS O, O'KEEFFE M, YAGHI O M. Three-periodic nets and tilings:edge-transitive binodal structures[J]. Acta Crystallographica Section A Foundations of Crystallography, 2006, 62(5):350-355. |
[78] | ALEXANDROV E V, SHEVCHENKO A P, ASIRI A A, et al. New knowledge and tools for crystal design:local coordination versus overall network topology and much more[J]. CrystEngComm, 2015, 17(15):2913-2924. |
[79] | FABER F, LINDMAA A, VON LILIENFELD O A, et al. Crystal structure representations for machine learning models of formation energies[J]. International Journal of Quantum Chemistry, 2015, 115(16):1094-1101. |
[80] | BHARDWAJ R M A J. A random forest model for predicting the crystallisability of organic molecules[J]. CrystEngComm, 2015, 23(17):4272-4275. |
[81] | BHARDWAJ R M, JOHNSTON A, JOHNSTON B F, et al. A random forest model for predicting the crystallisability of organic molecules[J]. Crystengcomm, 2015, 17(23):4272-4275. |
[82] | OVERTON I M, VAN NIEKERK C A J, BARTON G J. XANNpred:neural nets that predict the propensity of a protein to yield diffraction-quality crystals[J]. Proteins Structure Function & Bioinformatics, 2015, 79(4):1027-1033. |
[83] | DUROS V, GRIZOU J, XUAN W, et al. Human versus robots in the discovery and crystallization of gigantic polyoxometalates[J]. Angewandte Chemie International Edition, 2017, 56(36):10815-10820. |
[84] | 卞正岗. 高端智能装备与自动化技术[J]. 自动化博览, 2011, 28(s1):2-5. BIAN Z G. Automation technique and advanced intelligent equipment[J]. Automation Panorama, 2011, 28(s1):2-5. |
[85] | SIMON L L, SIMONE E, OUCHERIF K A. Chapter 9-Crystallization process monitoring and control using process analytical technology[J]. Computer Aided Chemical Engineering, 2018, 41:215-242. |
[86] | 王娜, 陶晓龙, 史欢欢, 等. 过程分析技术在晶体多晶型研究中的应用[J]. 化学工业与工程, 2017, 34(2):1-9. WANG N, TAO X L, SHI H H, et al. Application of process analytical tools in polymorphism of crystalline materials[J]. Chemical Industry and Engineering, 2017, 34(2):1-9. |
[87] | SIMON L L, NAGY Z K, HUNGERBUHLER K. Comparison of external bulk video imaging with focused beam reflectance measurement and ultra-violet visible spectroscopy for metastable zone identification in food and pharmaceutical crystallization processes[J]. Chemical Engineering Science, 2009, 64(14):3344-3351. |
[88] | POWELL K A, CROKER D M, RIELLY C D, et al. PAT-based design of agrochemical co-crystallization processes:a case-study for the selective crystallization of 1:1 and 3:2 co-crystals of p-toluenesulfonamide/triphenylphosphine oxide[J]. Chemical Engineering Science, 2016, 152:95-108. |
[89] | PEÑA R, NAGY Z K. Process intensification through continuous spherical crystallization using a two-stage mixed suspension mixed product removal(MSMPR) system[J]. Crystal Growth & Design, 2015, 15(9):4225-4236. |
[90] | LIU W, WEI H, ZHAO J, et al. Investigation into the cooling crystallization and transformations of carbamazepine using in situ FBRM and PVM[J]. Organic Process Research & Development, 2013, 17(11):1406-1412. |
[91] | LUO Y, TU Y, GE J, et al. Monitoring the crystallization process of methylprednisolone hemisuccinate(MPHS) from ethanol solution by combined ATR-FTIR-FBRM-PVM[J]. Separation Science & Technology, 2013, 48(12):1881-1890. |
[92] | KLAPWIJK A R, SIMONE E, NAGY Z K, et al. Tuning crystal morphology of succinic acid using a polymer additive[J]. Crystal Growth & Design, 2016, 16(8):4349-4359. |
[93] | KADAM S S, WINDT E V D, DAUDEY P J, et al. A comparative study of ATR-FTIR and FT-NIR spectroscopy for in-situ concentration monitoring during batch cooling crystallization processes[J]. Crystal Growth & Design, 2010, 10(6):2629-2640. |
[94] | SALEEMI A, RIELLY C, NAGY Z K. Automated direct nucleation control for in situ dynamic fines removal in batch cooling crystallization[J].Crystengcomm, 2012, 14(6):2196-2203. |
[95] | SIMONE E, SALEEMI A N, NAGY Z K. In situ monitoring of polymorphic transformations using a composite sensor array of Raman, NIR, and ATR-UV/vis spectroscopy, FBRM, and PVM for an intelligent decision support system[J]. Organic Process Research & Development, 2015, 19(1):167-177. |
[96] | SIMONE E, SALEEMI A N, NAGY Z K. Application of quantitative Raman spectroscopy for the monitoring of polymorphic transformation in crystallization processes using a good calibration practice procedure[J]. Chemical Engineering Research & Design, 2014, 92(4):594-611. |
[97] | SIMON L L, OUCHERIF K A, NAGY Z K, et al. Histogram matching, hypothesis testing, and statistical control-chart-assisted nucleation detection using bulk video imaging for optimal switching between nucleation and seed conditioning steps[J]. Industrial & Engineering Chemistry Research, 2010, 49(20):9932-9944. |
[98] | SIMON L L, OUCHERIF K A, NAGY Z K, et al. Bulk video imaging based multivariate image analysis, process control chart and acoustic signal assisted nucleation detection[J]. Chemical Engineering Science, 2010, 65(17):4983-4995. |
[99] | KEE N C S, TAN R B H, BRAATZ R D. Selective crystallization of the metastable a-form of L-glutamic acid using concentration feedback control[J]. Crystal Growth & Design, 2009, 9(7):3044-3051. |
[100] | FUJIWARA M, NAGY Z K, JIE W C, et al. First-principles and direct design approaches for the control of pharmaceutical crystallization[J]. Journal of Process Control, 2005, 15(5):493-504. |
[101] | XING Y W, NAGY Z K, TAN R B H, et al. Adaptive concentration control of cooling and antisolvent crystallization with laser backscattering measurement[J]. Crystal Growth & Design, 2009, 9(1):182-191. |
[102] | ALATALO H M, HATAKKA H, LOUHI KULTANEN M, et al. Closed-loop control of reactive crystallization(Ⅰ):Supersaturation-controlled crystallization of L-glutamic acid[J]. Chemical Engineering & Technology, 2010, 33(5):743-750. |
[103] | KLEINERT T, WEICKGENANNT M, JUDAT B, et al. Cascaded two-degree-of-freedom control of seeded batch crystallisations based on explicit system inversion[J]. Journal of Process Control, 2010, 20(1):29-44. |
[104] | KHAN S, MA C Y, MAHMUD T, et al. In-process monitoring and control of supersaturation in seeded batch cooling crystallization of L-glutamic acid:from laboratory to industrial pilot plant[J]. Organic Process Research & Development, 2011, 15(3):540-555. |
[105] | ZHOU G, MOMENT A, YAUNG S, et al. Evolution and application of an automated platform for the development of crystallization processes[J]. Organic Process Research & Development, 2013, 17(10):1320-1329. |
[106] | KACKER R, SALVADOR P M, STURM G S J, et al. Microwave assisted direct nucleation control for batch crystallization:crystal size control with reduced batch time[J]. Crystal Growth & Design, 2016, 16(1):440-446. |
[107] | SALEEMI A N, RIELLY C D, NAGY Z K. Comparative investigation of supersaturation and automated direct nucleation control of crystal size distributions using ATR-UV/vis spectroscopy and FBRM[J]. Crystal Growth & Design, 2012, 12(12):1792-1807. |
[108] | PATAKI H, CSONTOS I, NAGY Z K, et al. Implementation of Raman signal feedback to perform controlled crystallization of carvedilol[J]. Organic Process Research & Development, 2013, 17(3):493-499. |
[109] | SIMONE E, SALEEMI A N, TONNON N, et al. Active polymorphic feedback control of crystallization processes using a combined Raman and ATR-UV/vis spectroscopy approach[J]. Crystal Growth & Design, 2014, 14(4):1839-1850. |
[110] | YANG Y, SONG L, NAGY Z K. Automated direct nucleation control in continuous mixed suspension mixed product removal cooling crystallization[J]. Crystal Growth & Design, 2016, 15(12):5839-5848. |
[111] | YANG Y, SONG L, ZHANG Y, et al. Application of wet milling-based automated direct nucleation control in continuous cooling crystallization processes[J]. Industrial & Engineering Chemistry Research, 2016, 55(17):4987-4996. |
[112] | LAI T T C, CORNEVIN J, FERGUSON S, et al. Control of polymorphism in continuous crystallization via mixed suspension mixed product removal systems cascade design[J]. Crystal Growth & Design, 2016, 15(7):1433097091. |
[113] | TACHTATZIS C, SHERIDAN R, MICHIE C, et al. Image-based monitoring for early detection of fouling in crystallisation processes[J]. Chemical Engineering Science, 2015, 133(22):82-90. |
[114] | BELLO O, ZEADALLY S. Intelligent device-to-device communication in the internet of things[J]. IEEE Systems Journal, 2016, 10(3):1172-1182.43-750. |
[100] | KLEINERT T, WEICKGENANNT M, JUDAT B, et al. Cascaded two-degree-of-freedom control of seeded batch crystallisations based on explicit system inversion[J]. Journal of Process Control, 2010,20(1):29-44. |
[101] | KHAN S, MA C Y, MAHMUD T, et al. In-Process Monitoring and Control of Supersaturation in Seeded Batch Cooling Crystallisation of l-Glutamic Acid:From Laboratory to Industrial Pilot Plant[J]. Organic Process Research & Development, 2011,15(3):540-555. |
[102] | ZHOU G, MOMENT A, YAUNG S, et al. Evolution and Application of an Automated Platform for the Development of Crystallization Processes[J]. Organic Process Research & Development, 2013,17(10):1320-1329. |
[103] | KACKER R, SALVADOR P M, STURM G S J, et al. Microwave Assisted Direct Nucleation Control for Batch Crystallization:Crystal Size Control with Reduced Batch Time[J]. Crystal Growth & Design, 2016,16(1). |
[104] | SALEEMI A N, RIELLY C D, NAGY Z K. Comparative Investigation of Supersaturation and Automated Direct Nucleation Control of Crystal Size Distributions using ATR-UV/vis Spectroscopy and FBRM[J]. Crystal Growth & Design, 2012,12(12):1792-1807. |
[105] | PATAKI H, CSONTOS I, NAGY Z K, et al. Implementation of Raman Signal Feedback to Perform Controlled Crystallization of Carvedilol[J]. Organic Process Research & Development, 2013,17(3):493-499. |
[106] | SIMONE E, SALEEMI A N, TONNON N, et al. Active Polymorphic Feedback Control of Crystallization Processes Using a Combined Raman and ATR-UV/Vis Spectroscopy Approach[J]. Crystal Growth & Design, 2014,14(4):1839-1850. |
[107] | YANG Y, SONG L, NAGY Z K. Automated Direct Nucleation Control in Continuous Mixed Suspension Mixed Product Removal Cooling Crystallization[J]. Crystal Growth & Design, 2016,15(12):5839-5848. |
[108] | YANG Y, SONG L, ZHANG Y, et al. Application of Wet Milling-Based Automated Direct Nucleation Control in Continuous Cooling Crystallization Processes[J]. Industrial & Engineering Chemistry Research, 2016,55(17). |
[109] | LAI T T C, CORNEVIN J, FERGUSON S, et al. Control of Polymorphism in Continuous Crystallization via Mixed Suspension Mixed Product Removal Systems Cascade Design[J]. Crystal Growth & Design, 2016,15(7):1433097091. |
[110] | TACHTATZIS C, SHERIDAN R, MICHIE C, et al. Image-based monitoring for early detection of fouling in crystallisation processes[J]. Chemical Engineering Science, 2015,133(22):82-90. |
[111] | BELLO O, ZEADALLY S. Intelligent Device-to-Device Communication in the Internet of Things[J]. IEEE Systems Journal, 2016,10(3):1172-1182. |
[112] | 侯志霞, 邹方, 王湘念, 等. 关于建设航空智能生产线的思考[J]. 航空制造技术, 2015(8):50-52. Hou Zh X, Zhou F, Wang X N, et al. Suggestions on Aeronautic Intelligent Production Line Construction[J]. Aeronautical Manufacturing Technology, 2015(8):50-52. |
[113] | 孙柏林. 未来智能装备制造业发展趋势述评[J]. 自动化仪表, 2013(01):1-5. Sun B L. Commentary of the Development Trend for Intelligent Equipment Manufacturing Industry in the Future[J]. Process Automation Instrumentation, 2013(01):1-5. |
[1] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[4] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[5] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[6] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[7] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[8] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[9] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[10] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[11] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[12] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
[13] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[14] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[15] | 史克年, 郑景元, 钱宇, 杨思宇. 基于马尔可夫链的蒸汽动力系统两阶段随机规划[J]. 化工学报, 2023, 74(2): 807-817. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||