化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 15-22.DOI: 10.11949/j.issn.0438-1157.20181400
收稿日期:
2018-11-22
修回日期:
2018-11-30
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
商辉
作者简介:
商辉(1974—),女,博士研究生,副研究员,<email>huishang@cup.edu.cn</email>
基金资助:
Hui SHANG(),Yu DING,Wenhui ZHANG
Received:
2018-11-22
Revised:
2018-11-30
Online:
2019-03-31
Published:
2019-03-31
Contact:
Hui SHANG
摘要:
基于微波的选择性、瞬时性及体积性加热的特点,可以有效提高反应分子的平均能量、分子的碰撞频率,加快反应速率,采用微波辅助催化酯交换反应制备生物柴油近几年得到了国内外学者的广泛关注。将微波能应用于生物柴油制备过程具有显著的优势,与传统加热方式相比,采用微波辐射加热,反应时间明显缩短,产物组成也有所变化。因此主要从酸碱催化剂催化酯交换反应和酯化反应的角度,综述了国内外对微波辅助生物柴油制备的研究进展,并对微波优势及未来发展趋势进行了展望。
中图分类号:
商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
Hui SHANG, Yu DING, Wenhui ZHANG. Research progress of microwave assisted biodiesel production[J]. CIESC Journal, 2019, 70(S1): 15-22.
1 | 梁斌. 生物柴油的生产技术[J]. 化工进展, 2005, 24(6): 577-585. |
LiangB. Manufacture technologies of biodiesel[J]. Chemical Industry and Engineering Progress, 2005, 24(6): 577-585. | |
2 | 巩利平. 生物柴油的优点与研究现状[J]. 太原大学学报, 2007, 8(4): 132-134. |
GongL P. The advantage and present research situation of biodiesel [J]. Journal of Taiyuan University, 2007, 8(4): 132-134. | |
3 | 朱建良, 张冠杰. 国内外生物柴油研究生产现状及发展趋势[J]. 化工时刊, 2004, 18(1): 23-27. |
ZhuJ L, ZhangG J. Current situation and development trend of the research and production of biodiesel[[J]. Chemical Industry Time, 2004, 18(1): 23-27. | |
4 | 王东军, 姜伟, 赵仲阳, 等. 油脂制备生物柴油工业化技术进展[J]. 天然气化工, 2017, 42(5): 114-119. |
WangD J, JiangW, ZhaoZ Y, et al. Progress in industrialization technologies for preparation of biodiesel from oils and fats[J]. Natural Gas Chemical Industry, 2017, 42(5): 114-119. | |
5 | 冯为为. 变废为宝“地沟油”绿色利用之路[J]. 节能与环保, 2017, (12): 40-42. |
FengW W. Turn waste into treasure, “ground oil” green utilization road[J]. Energy Conservation & Environment Protection, 2017, (12): 40-42. | |
6 | 中华人民共和国国家质量监督检查检疫总局, 中国国家标准化管理委员会. B5柴油: GB 25199—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. B5 diesel: GB 25199—2017[S]. Beijing: Standards Press of China, 2017. | |
7 | 冯以卓, 张瑞亮, 杨甜甜, 等. 压燃式发动机燃用F-T柴油/生物柴油混合燃料的燃烧及振动特性研究[J]. 可再生能源, 2018, 36(3): 334-339. |
FengY Z, ZhangR L, YangT T, et al. Combustion and vibration characteristics of a compression ignition engine fuelled with F-T diesel-biodiesel blends[J]. Renewable Energy Resources, 2018, 36(3): 334-339. | |
8 | 魏红明, 赵华. 生物柴油制备方法及应用现状[J]. 当代化工, 2006, 35(4): 246-249. |
WeiH M, ZhaoH. Preparation methods of application situation of biodiesel fuels[J]. Contemporary Chemical Industry, 2006, 35(4): 246-249. | |
9 | 张萍波, 韩秋菊, 范明明, 等. 酯交换法制备生物柴油反应机理的研究进展[J]. 石油化工, 2012, 41(9): 1081-1086. |
ZhangP B, HanQ J, FanM M, et al. Progresses in study on the mechanism of transesterification for biodiesel fuel[J]. Petrochemical Technology, 2012, 41(9): 1081-1086. | |
10 | 张秋云, 杨松, 李虎. 制备生物柴油的固体酸催化剂研究进展[J]. 化工进展, 2013, 32(3): 575-583. |
ZhangQ Y, YangS, LiH. Research progress in the preparation of biodiesel with solid acid as the catalyst[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 575-583. | |
11 | GedyeR, SmithF, WestawayK, et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Letter, 1986, 27(3): 279-282. |
12 | VrålstadH N, ΦSpets, LesaintC, et al. Dielectric properties of crude oil components [J]. Energy & Fuels, 2009, 23(11): 5596-5602. |
13 | MeredithR J. Engineers Handbook of Industrial Microwave Heating[M]. London: Institute of Electrical Engineers, 1998. |
14 | AmaisR S, DonatiG L, SchiavoD, et al. A simple dilute-and-shoot procedure for Si determination in diesel and biodiesel by microwave-induced plasma optical emission spectrometry[J]. Microchemical Journal, 2013, 106: 318-322. |
15 | AzcanN, DanismanA. Microwave assisted transesterification of rapeseed oil[J]. Fuel, 2008, 87(10/11): 1781-1788. |
16 | AzcanN, YilmazO. Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation[J]. Fuel, 2013, 104: 614-619. |
17 | BoldorD, KanitkarA, TerigarB G, et al. Microwave assisted extraction of biodiesel feedstock from the seeds of invasive Chinese tallow tree[J]. Environmental Science Technology, 2010, 44(10): 4019-4025. |
18 | ChengJ, HuangR, YuT, et al. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction[J]. Bioresource Technology, 2014, 151: 415-418. |
19 | ChoedkiatsakulI, NgaosuwanK, AssabumrungratS, et al. Biodiesel production in a novel continuous flow microwave reactor[J]. Renewable Energy, 2015, 83: 25-29. |
20 | da RósP C, de CastroH F, CarvalhoA K, et al. Microwave-assisted enzymatic synthesis of beef tallow biodiesel[J]. Journal of Industrial Microbiology, 2012, 39(4): 529-536. |
21 | DaiY M, ChenK T, ChenC C. Study of the microwave lipid extraction from microalgae for biodiesel production[J]. Chemical Engineering Journal, 2014, 250: 267-273. |
22 | EnweremaduC, MbarawaM. Technical aspects of production and analysis of biodiesel from used cooking oil—a review[J]. Renewable Sustainable Energy Reviews, 2009, 13(9): 2205-2224. |
23 | FooK, HameedB. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters[J]. Bioresource Technology, 2012, 103(1): 398-404 |
24 | AtadashiI M, ArouaM K, AzizA R A, et al. Production of biodiesel using high free fatty acid feedstocks[J]. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3275-3285. |
25 | PinziS, GandiaL M, ArzamendiG, et al. Influence of vegetable oils fatty acid composition on reaction temperature and glycerides conversion to biodiesel during transesterification[J]. Bioresource Technology, 2011, 102(2): 1044-1050 |
26 | SabudakT, YildizM. Biodiesel production from waste frying oils and its quality control[J]. Waste Management, 2010, 30(5): 799-803. |
27 | FooK, HameedB. Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation[J]. Bioresource technology, 2013, 130: 696-702. |
28 | GroismanY, GedankenA. Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis[J]. The Journal of Physical Chemistry C, 2008, 112(24): 8802-8808. |
29 | GuldheA, SinghB, RawatI, et al. Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst[J]. Chemical Engineering Research, 2014, 92(8): 1503-1511. |
30 | HernandoJ, LetonP, MatiaM P, et al. Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes[J]. Fuel, 2007, 86(10/11): 1641-1644. |
31 | JaliliannosratiH, AminN A S, Talebian-KiakalaiehA, et al. Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: optimization using response surface methodology[J]. Bioresource Technology, 2013, 136: 565-573. |
32 | KamathH V, RegupathiI, SaiduttaM. Optimization of two step karanja biodiesel synthesis under microwave irradiation[J]. Fuel Processing Technology, 2011, 92(1): 100-105. |
33 | KhemthongP, LuadthongC, NualpaengW, et al. Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production[J]. Catalysis Today, 2012, 190(1): 112-116. |
34 | LamM K, LeeK T, MohamedA R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review[J]. Biotechnology Advances, 2010, 28(4): 500-518. |
35 | LeadbeaterN E, BarnardT M, StencelL M, et al. Batch and continuous-flow preparation of biodiesel derived from butanol and facilitated by microwave heating[J]. Energy Fuels, 2008, 22(3): 2005-2008. |
36 | LiY, YeB, ShenJ, et al. Optimization of biodiesel production process from soybean oil using the sodium potassium tartrate doped zirconia catalyst under microwave chemical reactor[J]. Bioresource Technology, 2013, 137: 220-225. |
37 | LinY C, YangP M, ChenS C, et al. Improving biodiesel yields from waste cooking oil using ionic liquids as catalysts with a microwave heating system[J]. Fuel Processing Technology, 2013, 115: 57-62. |
38 | MajewskiM W, PollackS A, Curtis-PalmerV A. Diphenylammonium salt catalysts for microwave assisted triglyceride transesterification of corn and soybean oil for biodiesel production[J]. Tetrahedron Letters, 2009, 50(37): 5175-5177. |
39 | MotasemiF, AniF N. A review on microwave-assisted production of biodiesel[J]. Renewable Sustainable Energy Reviews, 2012, 16(7): 4719-4733. |
40 | MuleyP D, BoldorD. Investigation of microwave dielectric properties of biodiesel components[J]. Bioresource Technology, 2013, 127: 165-174. |
41 | NogueiraB M, CarretoniC, CruzR, et al. Microwave activation of enzymatic catalysts for biodiesel production[J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 67(1/2): 117-121. |
42 | PatilP, ReddyH, MuppaneniT, et al. Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions[J]. Bioresource Technology, 2013, 137: 278-285. |
43 | PatilP D, ReddyH, MuppaneniT, et al. Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel[J]. Green Chemistry, 2012, 14(3): 809-818. |
44 | RefaatA A. Different techniques for the production of biodiesel from waste vegetable oil[J]. International Journal of Environmental Science Technology, 2010, 7(1): 183-213. |
45 | RefaatA, El SheltawyS T. Time factor in microwave-enhanced biodiesel production[J]. WSEAS Transactions on Environment and Development, 2008, 4(4): 279. |
46 | Talebian-KiakalaiehA, AminN A S, MazaheriH. A review on novel processes of biodiesel production from waste cooking oil[J]. Applied Energy, 2013, 104: 683-710. |
47 | TeoC L, IdrisA. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production[J]. Bioresource Technology, 2014, 171: 477-481. |
48 | WaliW, HassanK, CullenJ, et al. Real time monitoring and intelligent control for novel advanced microwave biodiesel reactor[J]. Measurement, 2013, 46(1): 823-839. |
49 | 吴炼. 均相碱催化酯交换反应制备生物柴油过程强化研究[D]. 南宁: 广西大学, 2016 |
WuL. Process intensification study of the homogeneous base-catalyzed transesterification for biodiesel production[D]. Nanning: Guangxi University, 2016. | |
50 | 张增强, 孙楠, 高锦明, 等. 微波辅助棕榈油制备生物柴油的研究[J]. 中国油脂, 2008, 33(3): 53-55. |
ZhangZ Q, SunN, GaoJ M, et al. Preparation of biodiesel from palm oil assisted by microwave[J]. China Oils and Fats, 2008, 33(3): 53-55. | |
51 | 韩毅, 邓宇, 郝敬梅, 等. NaOH催化微波法制备生物柴油的工艺研究[J]. 精细石油化工进展, 2008, 9(1): 38-41. |
HanY, DengY, HaoJ M, et al. Research on preparation of biodiesel by NaOH base catalysis under microwave irradiation[J]. Advanges in Fine Petrochemicals, 2008, 9(1): 38-41. | |
52 | KumarR, KumarG R, ChandrashekarN. Microwave assisted alkali-catalyzed transesterification of pongamia pinnata seed oil for biodiesel production[J]. Bioresource Technology, 2011, 102(11): 6617-6620. |
53 | LinJ J, ChenY W. Production of biodiesel by transesterification of Jatropha oil with microwave heating[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: 43-50. |
54 | 李为民, 郑晓林, 徐春明, 等. 固体碱法制备生物柴油及其性能[J]. 化工学报, 2005, 56(4): 717-722. |
LiW M, ZhengX L, XuC M, alet . Preparation and its properties of biodiesel by using solid base catalyst[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(4): 717-722. | |
55 | 张洪浩, 张立科, 高娟娟. 微波辅助固体碱催化制备生物柴油[J]. 浙江化工, 2009, 40(3): 8-10. |
ZhangH H, ZhangL K, GaoJ J. Microwave-assisted solid base catalyst preparation of biodiesel[J]. Zhejiang Chemical Industry, 2009, 40(3): 8-10. | |
56 | NayebzadehH, SaghatoleslamiA, TabasizadehT. Application of microwave irradiation for preparation of a KOH/calcium aluminate nanocatalyst and biodiesel[J]. Chemical Engineer Technology, 2017, 40(10): 1826-1834. |
57 | FatimahI, YudhaS P. KF-modified natural halloysite as green catalyst in microwave assisted biodiesel conversion[J]. Energy Procedia, 2017, 105: 1796-1805. |
58 | 谢国剑. 高酸值潲水油制取生物柴油的研究[J]. 化工技术与开发, 2005, 34(2): 37-39. |
XieG J. Preparation of biodiesel from high acid value restaurant grease[J]. Technology & Development of Chemical Industry, 2005, 34(2): 37-39. | |
59 | 刘明超. 微波强化生物柴油制备的研究[D]. 天津: 天津大学, 2015. |
LiuM C. Research on preparation of biodiesel intensified by microwave irradiation[D]. Tianjin: Tianjin University, 2015. | |
60 | 张德谨, 谢永, 李梦玉, 等. 微波辅助玉米油基生物柴油制备及酯化反应动力学[J]. 过程工程学报, 2018, 18(4): 845-850. |
ZhangD J, XieY, LiM Y, et al. Preparation of biodiesel from corm oil assisted by microwave and reaction kinetics of esterification[J]. The Chinese Journal of Process Engineering, 2018, 18(4): 845-850. | |
61 | 张谡, 付玉杰, 王黎丽, 等. 微波辐射酸催化喜树种子油制备生物柴油工艺[J]. 化学工程, 2009, 37(1): 66-69. |
ZhangS, FuY J, WangL L, et al. Preparation of biodiesel from Camptotheca acuminata decne seed oil by acid catalysis under microwave irradiation[J]. Chemical Engineering (China), 2009, 37(1): 66-69. | |
62 | LeadbeaterN E, StencelL M. Fast, easy preparation of biodiesel using microwave heating[J]. Energy Fuels, 2006, 20 (5): 2281-2283. |
63 | 蔡新安, 张春干, 余忠定. 微波辐射酸催化潲水油合成生物柴油的研究[J]. 化学工程师, 2008, (9): 6-7. |
CaiX A, ZhangC G, YuZ D. Study on synthesizing biodiesel by the acid catalyst of waste restaurant grease under microwave radiation[J]. Chemical Engineer, 2008, (9): 6-7. | |
64 | 黄振东, 王睿, 于美青. KOH/ZrO2催化制备生物柴油新工艺[J]. 化工学报, 2016, 67(S2): 176-183. |
HuangZ D, WangR, YuM Q. New technique of biodiesel preparation catalyzed by KOH/ZrO2[J]. CIESC Journal, 2016, 67(S2): 176-183. | |
65 | 胡雪玲, 韦藤幼, 吴炼, 等. 改性膨润土催化麻疯树油酯交换反应动力学及生物柴油纯化[J]. 化工学报, 2015, 66(8): 3113-3119. |
HuX L, WeiT Y, WuL, et al. Kinetics of jatropha oil transesterification catalyzed by modified bentonite and biodiesel purification[J]. CIESC Journal, 2015, 66(8): 3113-3119. | |
66 | 颜姝丽, 鲁厚芳, 姜利寒, 等. 固体碱催化剂用于油脂甲醇酯交换反应制备生物柴油[J]. 化工学报, 2007, 58(10): 2506-2512. |
YanS L, LuH F, JiangL H, et al. Solid base catalysts for transesterification of oil with methanol to produce biodiesel[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(10): 2506-2512. | |
67 | SoltaniS, RashidU, NehdiI A, et al. Sulfonated mesoporous zinc aluminate catalyst for biodiesel production from high free fatty acid feedstock using microwave heating system[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 219-228. |
68 | YuanH, YangB, ZhuG. Biodiesel production with water-tolerance and a microwave absorbing catalyst using tung oil[J]. International Journal of Green Energy, 2013, 10(10): 999-1010. |
69 | 刘孟凯. B5祸市[J]. 中国石油石化, 2013, (23): 36-37. |
LiuM K. B5 disrupted the market[J]. China Petrochem, 2013, (23): 36-37. | |
70 | 何清. 进口商神奇通道: 假道生物柴油避税[N]. 21世纪经济报道, 2013-06-05(17). |
HeQ. Imported merchants magic channel: through the biodiesel tax avoidance[N]. 21st Century Business Herald, 2013-06-05(17). | |
71 | 陈琼可. 成品油消费税税率改变对消费需求的影响研究[D]. 昆明: 云南财经大学, 2017. |
ChenQ K. Study on the impact of changes in the consumption tax rate of refined oil on consumer demand[D]. Kunming: Yunnan University of Finance and Economics, 2017. | |
72 | 董海, 仇玄, 尹杰. 我国生物柴油市场现状及展望[J]. 国际石油经济, 2014, 22(10): 94-96. |
DongH, QiuX, YinJ. Current status and prospects of China’s biodiesel market[J]. International Petroleum Economics, 2014, 22(10): 94-96. | |
73 | 晓波.“变废为宝”的生物柴油缘何陷绝境?[N]. 中国能源报, 2016-09-05(4). |
XiaoB. Why can biodiesel, which can turn waste into treasure, fall into desperation?[N]. China Energy News, 2016-09-05(4). | |
74 | 我国明确2020年全面推广车用乙醇汽油[J]. 政策, 2017, (10): 78. |
China has clearly promoted the comprehensive promotion of ethanol gasoline for vehicles in 2020[J]. Policy, 2017, (10): 78. | |
75 | 陈玺撼. 今年力争让“B5生物柴油”进200多座加油站[N]. 解放日报, 2018-04-24(5). |
ChenX H. This year, we will strive to make “B5 biodiesel” into more than 200 gas stations[N]. Liberation Daily, 2018-04-24(5). | |
76 | BarnardT M, LeadbeaterN E, BoucherM B, et al. Continuous-flow preparation of biodiesel using microwave heating[J]. Energy Fuels, 2007, 21(3) : 1777-1781. |
77 | EstelL, PouxM, BenamaraN, et al. Continuous flow-microwave reactor: where are we?[J]. Chemical Engineering and Processing: Process Intensification, 2017, 113: 56-64. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[14] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[15] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||