唐丽丽, 何道航, 观富宜
收稿日期:
2012-03-19
修回日期:
2012-05-30
出版日期:
2012-11-05
发布日期:
2012-11-05
通讯作者:
何道航
作者简介:
唐丽丽(1986-),女,硕士研究生。
基金资助:
中央高校基本科研业务费项目(2012ZM0035)。
TANG Lili, HE Daohang, GUAN Fuyi
Received:
2012-03-19
Revised:
2012-05-30
Online:
2012-11-05
Published:
2012-11-05
Supported by:
supported by the Fundamental Research Funds for the Central Universities(2012ZM0035).
摘要: 肽基分子自组装以其丰富的自组装驱动力、新颖的自组装体纳米结构、自组装体的特殊功能及良好的生物相容性等,在纳米生物材料、护肤和化妆产品、药物传输释放、组织工程支架材料等方面有着广泛的应用前景。由天然氨基酸组成的自组装短肽具有良好的低细胞毒性,可控的降解性能,高的运载效率及细胞摄取率,同时还具有降低药物的毒副作用等优点。因此,它在作为药物和基因的纳米载药材料方面有着巨大的发展前景。使用自组装肽基材料形成的纳米载体对疏水性抗癌药物、蛋白质药物及基因等进行传递释放已成为生物医药学领域的研究重点,因此,对近年来自组装肽基纳米材料作为药物和基因载体在生物医药学上的研究进展做了综述。
中图分类号:
唐丽丽, 何道航, 观富宜. 自组装肽基纳米材料运载药物和基因的研究进展[J]. 化工学报, DOI: 10.3969/j.issn.0438-1157.2012.11.002.
TANG Lili, HE Daohang, GUAN Fuyi. Progress of peptide based self-assembled nanomaterials for drug and gene delivery[J]. CIESC Journal, DOI: 10.3969/j.issn.0438-1157.2012.11.002.
[1] | Zhang S G,Holmes T,Lockshin C,Rich A.Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane[J].Proc. Natl. Acad. Sci. U.S.A.,1993,90(8):3334-3338 |
[2] | Zhang S G,Gelain F,Zhao X J.Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures[J].Semin. Cancer Biol.,2005,15(5):413-420 |
[3] | Ellis-Behnke R G,Liang Y X,You S W,Tay D K C,Zhang S G,So K F,Schneider G E.Nano-neuro knitting:peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision[J].Proc. Natl. Acad. Sci. U. S. A.,2006,103(16):5054-5059 |
[4] | Zhang S G.Emerging biological materials through molecular self-assembly[J].Biotechnol. Adv.,2002,20(5/6):321-339 |
[5] | Santoso S S,Vauthey S,Zhang S G.Structures,function and applications of amphiphilic peptides[J].Current Opinion in Colloid & Interface Science,2002,7(5/6):262-266 |
[6] | Keyes-Baig C,Duhamel J,Fung S Y,Bezaire J,Chen P. Self-assembling peptide as a potential carrier of hydrophobic compounds[J].J. Am. Chem. Soc.,2004,126(24):7522-7532 |
[7] | Fung S Y,Yang H,Bhola P T,Sadatmousavi P,Muzar E,Liu M Y,Chen P.Self-assembling peptide as a potential carrier for hydrophobic anticancer drug ellipticine:complexation,release and in vitro delivery[J].Adv. Funct. Mater.,2009,19(1):74-83 |
[8] | Ruan L P,Zhang H Y,Luo H L,Liu J P,Tang F S,Shi Y K,Zhao X J.Designed amphiphilic peptide forms stable nanoweb,slowly releases encapsulated hydrophobic drug,and accelerates animal hemostasis[J].Proc. Natl. Acad. Sci. U. S. A.,2009,106(13):5105-5110 |
[9] | Ye Z Y,Zhang H Y,Luo H L,Wang S K,Zhou Q H,Du X P,Tang C K,Chen L Y,Liu J P,Shi Y K,Zhang E Y,Ellis-Behnke R,Zhao X J.Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-1[J].J. Pept. Sci.,2008,14(2):152-162 |
[10] | Song H,Zhang L L,Zhao X J.Hemostatic efficacy of biological self-assembling peptide nanofibers in a rat kidney model[J].Macromol. Biosci.,2010,10(1):33-39 |
[11] | He Daohang(何道航),Tang Lili(唐丽丽).A class of half-sequence amphiphilic self-assembling peptides be used as nano-hemostatic materials and the carrier of hydrophobic compounds:CN,201110053063.X.2011-03-07 |
[12] | Guler M O,Claussen R C,Stupp S I.Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers[J].J. Mater. Chem.,2005,15(42):4507-4512 |
[13] | Fung S Y,Yang H,Chen P.Sequence effect of self-assembling peptides on the complexation and in vitro delivery of the hydrophobic anticancer drug ellipticine[J].PLoS One,2008,3(4):1-12 |
[14] | Fung S Y,Yang H,Sadatmousavi P,Sheng Y,Mamo T,Nazarian R,Chen P.Amino acid pairing for de novo design of self-assembling peptides and their drug delivery potential[J].Adv. Funct. Mater.,2011,21(13):2456-2464 |
[15] | Naskar J,Palui G,Banerjee A.Tetrapeptide-based hydrogels:for encapsulation and slow release of an anticancer drug at physiological pH[J].J. Phys. Chem. B,2009,113(35):11787-11792 |
[16] | Altunbas A,Lee S J,Rajasekaran S A,Schneider J P,Pochan D J.Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles[J].Biomaterials,2011,32(25):5906-5914 |
[17] | Wu M,Ye Z Y,Liu Y F,Liu B,Zhao X J.Release of hydrophobic anticancer drug from a newly designed self-assembling peptide[J].Mol. Biosyst.,2011,7(6):2040-2047 |
[18] | Liu J P,Zhang L L,Yang Z H,Zhao X J.Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro[J].International Journal of Nanomedicine,2011,6:2143-2153 |
[19] | Tang F S,Zhao X J.Interaction between a self-assembling peptide and hydrophobic compounds[J].J. Biomater. Sci-Polym. Ed.,2010,21(5):677-690 |
[20] | Wang J,Tang F S,Li F,Lin J,Zhang Y H,Du L F,Zhao X J.The amphiphilic self-assembling peptide EAK16-Ⅰ as a potential hydrophobic drug carrier[J].J. Nanomater.,2008,2008:1-8 |
[21] | Lu Y Z,Zhao X J.Fluorescence studies on a designed peptide of REIP as a potential hydrophobic drug carrier[J].Int. J. Pept. Res. Ther.,2011,17(2):81-86 |
[22] | Accardo A,Tesauro D,Mangiapia G,Pedone C,Morelli G.Nanostructures by self-assembling peptide amphiphile as potential selective drug carriers[J].Biopolymers,2007,88(2):115-121 |
[23] | Morisco A,Accardo A,Tesauro D,Palumbo R,Benedetti E,Morelli G.Peptide-labeled supramolecular aggregates as selective doxorubicin carriers for delivery to tumor cells[J].Biopolymers,2011,96(1):88-96 |
[24] | Kim J K,Anderson J,Jun H W,Repka M A,Jo S.Self-assembling peptide amphiphile-based nanofiber gel for bioresponsive cisplatin delivery[J].Molecular Pharmaceutics,2009,6(3):978-985 |
[25] | Huang R L,Qi W,Feng L B,Schneider J P,Pochan D J.Self-assembling peptide-polysaccharide hybrid hydrogel as a potential carrier for drug delivery[J].Soft Matter,2011,7(13):6222-6230 |
[26] | Buchser W J,Pardinas J R,Shi Y,Bixby J L,Lemmon V P.96-Well electroporation method for transfection of mammalian central neurons[J].Biotechniques,2006,41(5):619-622 |
[27] | Peng P D,Cohen C J,Yang S,Hsu C,Jones S,Zhao Y,Zheng Z,Rosenberg S A,Morgan R A.Efficient nonviral Sleeping Beauty transposon-based TCR gene transfer to peripheral blood lymphocytes confers antigen-specific antitumor reactivity[J].Gene. Ther.,2009,16(8):1042-1049 |
[28] | Mae M,Langel U.Cell-penetrating peptides as vectors for peptide,protein and oligonucleotide delivery[J].Curr. Opin. Pharmacol.,2006,6(5):509-514 |
[29] | Bennion B J,Daggett V.The molecular basis for the chemical denaturation of proteins by urea[J].Proc. Natl. Acad. Sci. U. S. A.,2003,100(9):5142-5147 |
[30] | Fabre J W,Collins L.Synthetic peptides as non-viral DNA vectors[J].Curr. Gene. Ther.,2006,6(4):459-480 |
[31] | Morris M C,Depollier J,Mery J,Mery J,Heitz F,Divita G.A peptide carrier for the delivery of biologically active proteins into mammalian cells[J].Nat. Biotechnol.,2001,19(12):1173-1176 |
[32] | Gros E,Deshayes S,Morris M C,Aldrian-Herrada G,Depollier J,Heitz F,Divita G.A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction[J].Biochim. Biophys. Acta-Biomembr.,2006,1758(3):384-393 |
[33] | Munoz-Morris M A,Heitz F,Divita G,Morris M C.The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes[J].Biochem. Biophys. Res. Commun.,2007,355(4):877-882 |
[34] | Deshayes S,Heitz A,Morris M C,Charnet P,Divita G,Heitz F.Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis[J].Biochemistry,2004,43(6):1449-1457 |
[35] | Deshayes S,Morris M C,Divita G,Heitz F.Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics[J].J. Pept. Sci.,2006,12(12):758-765 |
[36] | Henriques S T,Castanho M A.Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide Pep-1 in lipidic vesicles[J].Biochemistry,2004,43(30):9716-9724 |
[37] | Sharonov A,Hochstrasser R M.Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes[J].Biochemistry,2007,46(27):7963-7972 |
[38] | Henriques S T,Quintas A,Bagatolli L A,Homble F,Castanho M.Energy-independent translocation of cell-penetrating peptides occurs without formation of pores.A biophysical study with Pep-1[J].Mol. Membr. Biol.,2007,24(4):282-293 |
[39] | Aoshiba K,Yokohori N,Nagai A.Alveolar wall apoptosis causes lung destruction and emphysematous changes[J].Am. J. Respir. Cell. Mol. Biol.,2003,28(5):555-562 |
[40] | Maron M B,Folkesson H G,Stader S M,Walro J M.PKA delivery to the distal lung air spaces increases alveolar liquid clearance after isoproterenol-induced alveolar epithelial PKA desensitization[J].Am. J. Physiol-Lung. Cell. Mol. Physiol.,2005,289(2):L349-L354 |
[41] | Bais M V,Kumar S,Tiwari A K,Kataria R S,Nagaleekar V K,Shrivastava S,Chindera K.Novel Rath peptide for intracellular delivery of protein and nucleic acids[J].Biochem. Biophys. Res. Commun.,2008,370(1):27-32 |
[42] | Stoilova T B,Kovalchuk S I,Egorova N S,Surovoy A Y,Ivanov V T.Gramicidin A-based peptide vector for intracellular protein delivery[J].Biochim. Biophys. Acta-Biomembr.,2008,1778(10):2026-2031 |
[43] | Austin C D,Wen X H,Gazzard L,Nelson C,Scheller R H,Scales S J.Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates[J].Proc. Natl. Acad. Sci. U. S. A.,2005,102(50):17987-17992 |
[44] | Yang J,Chen H,Vlahov I R,Cheng J X,Low P S.Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging[J].Proc. Natl. Acad. Sci. U. S. A.,2006,103(37):13872-13877 |
[45] | Wender P A,Mitchell D J,Pattabiraman K,Pelkey E T,Steinman L,Rothbard J B.The design,synthesis,and evaluation of molecules that enable or enhance cellular uptake:peptoid molecular transporters[J].Proc. Natl. Acad. Sci. U. S. A.,2000,97(24):13003-13008 |
[46] | Kondo E,Tanaka T,Miyake T,Ichikawa T.Hirai M,Adachi M,Yoshikawa K,Ichimura K,Ohara N,Moriwaki A,Date I,Ueda R,Yoshino T.Potent synergy of dual antitumor peptides for growth suppression of human glioblastoma cell lines[J].Mol. Cancer. Ther.,2008,7(6):1461-1471 |
[47] | Kondo E,Seto M,Yoshikawa K,Yoshino T.Highly efficient delivery of p16 antitumor peptide into aggressive leukemia/lymphoma cells using a novel transporter system[J].Mol. Cancer. Ther.,2004,3(12):1623-1630 |
[48] | Wu C X,Lo S L,Boulaire J,Hong M L W,Beh H M,Leung D S Y,Wang S.A peptide-based carrier for intracellular delivery of proteins into malignant glial cells in vitro[J].J. Control. Release.,2008,130(2):140-145 |
[49] | Ho I A W,Lam P Y P,Hui K M.Identification and characterization of novel human glioma-specific peptides to potentiate tumor-specific gene delivery[J].Cancer. Gene. Ther.,2004,11(12):719-732 |
[50] | Zhao Y,Yokoi H,Tanaka M,Kinoshita T,Tan T W.Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide[J].Biomacromolecules,2008,9(6):1511-1518 |
[51] | Zhao Y,Tan T W,Yokoi H,Tanaka M,Kinoshita T. Controlled release and interaction of protein using self-assembling peptide RATEA16 nanofiber hydrogels[J].J. Polym. Sci. Pol. Chem.,2008,46(14):4927-4933 |
[52] | Zhao Y,Tanaka M,Kinoshita T,Higuchi M,Tan T W. Self-assembling peptide nanofiber scaffolds for controlled release governed by gelator design and guest size[J].J. Control. Release.,2010,147(3):392-399 |
[53] | Koutsopoulos S,Unsworth L D,Nagaia Y,Zhang S G.Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold[J].Proc. Natl. Acad. Sci. U. S. A.,2009,106(12):4623-4628 |
[54] | Measey T J,Schweitzer-Stenner R,Sa V,Kornev K. Anomalous conformational instability and hydrogel formation of a cationic class of self-assembling oligopeptides[J].Macromolecules,2010,43(18):7800-7806 |
[55] | Chow L W,Wang L J,Kaufman D B,Stupp S I.Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets[J].Biomaterials,2010,31(24):6154-6161 |
[56] | Collins L,Parker A L,Gehman J D,Eckley L,Perugini M A,Separovic F,Fabre J W.Self-assembly of peptides into spherical nanoparticles for delivery of hydrophilic moieties to the cytosol[J].ACS. Nano.,2010,4(5):2856-2864 |
[57] | Wang M,Law M,Duhamel J,Chen P.Interaction of a self-assembling peptide with oligonucleotides:complexation and aggregation[J].Biophys. J.,2007,93(7):2477-2490 |
[58] | Fominaya J,Gasset M,Garcia R,Roncal F,Albar J P,Bernad A.An optimized amphiphilic cationic peptide as an efficient non-viral gene delivery vector[J].J. Gene. Med.,2000,2(6):455-464 |
[59] | Morris M C,Chaloin L,Mery J,Heitz F,Divita G.A novel potent strategy for gene delivery using a single peptide vector as a carrier[J].Nucleic. Acids. Res.,1999,27(17):3510-3517 |
[60] | Simeoni F,Morris M C,Heitz F,Divita G.Insight into the mechanism of the peptide-based gene delivery system MPG:implications for delivery of siRNA into mammalian cells[J].Nucleic. Acids. Res.,2003,31(11):2717-2724 |
[61] | Crombez L,Charnet A,Morris M C,Aldrian-Herrada G,Heitz F,Divita G.A non-covalent peptide-based strategy for siRNA delivery[J].Biochem. Soc. Trans.,2007,35:44-46 |
[62] | Morris M C,Chaloin L,Choob M,Archdeacon J,Heitz F,Divita G.Combination of a new generation of PNAs with a peptide-based carrier enables efficient targeting of cell cycle progression[J].Gene. Ther.,2004,11(9):757-764 |
[63] | Morris M C,Gros E,Aldrian-Herrada G,Choob M,Archdeacon J,Heitz F,Divita G.A non-covalent peptide-based carrier for in vivo delivery of DNA mimics[J].Nucleic. Acids. Res.,2007,35(7):1-10 |
[64] | Guo X D,Tandiono F,Wiradharma N,Khor D,Tan C G,Khan M,Qian Y,Yang Y Y.Cationic micelles self-assembled from cholesterol-conjugated oligopeptides as an efficient gene delivery vector[J].Biomaterials,2008, 29(36):4838-4846 |
[65] | Seow W Y,Yang Y Y.A class of cationic triblock amphiphilic oligopeptides as efficient gene-delivery vectors[J].Adv. Mater.,2009,21(1):86-90 |
[66] | Wiradharma N,Khan M,Tong Y W,Wang S,Yang Y Y. Self-assembled cationic peptide nanoparticles capable of inducing efficient gene expression in vitro[J].Adv. Funct. Mater.,2008,18(6):943-951 |
[67] | Wiradharma N,Tong Y W,Yang Y Y.Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect[J].Biomaterials,2009,30(17):3100-3109 |
[68] | Naskar J,Roy S,Joardar A,Das S,Banerjee A.Self-assembling dipeptide-based nontoxic vesicles as carriers for drugs and other biologically important molecules[J].Org. Biomol. Chem.,2011,9(19):6610-6615 |
[69] | Xu X D,Liang L,Chen C S,Lu B,Wang N L,Jiang F G,Zhang X Z,Zhuo R X.Peptide hydrogel as an intraocular drug delivery system for inhibition of postoperative scarring formation[J].ACS Applied Materials & Interfaces,2010,2(9):2663-2671 |
[70] | Branco M C,Pochan D J,Wagner N J,Schneider J P.Macromolecular diffusion and release from self-assembled beta-hairpin peptide hydrogels[J].Biomaterials,2009,30(7):1339-1347 |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[4] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[5] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[8] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[9] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[10] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[11] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[12] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[13] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[14] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[15] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||