化工学报 ›› 2013, Vol. 64 ›› Issue (1): 165-172.DOI: 10.3969/j.issn.0438-1157.2013.01.019
骆广生, 王凯, 吕阳成, 王玉军, 徐建鸿
收稿日期:
2012-07-30
修回日期:
2012-09-30
出版日期:
2013-01-05
发布日期:
2013-01-05
通讯作者:
骆广生
作者简介:
骆广生(1964—),男,教授。
基金资助:
国家自然科学基金项目(21036002, 21176136, 21106076)。
LUO Guangsheng, WANG Kai, LV Yangcheng, WANG Yujun, XU Jianhong
Received:
2012-07-30
Revised:
2012-09-30
Online:
2013-01-05
Published:
2013-01-05
Supported by:
supported by the National Natural Science Foundation of China (21036002, 21176136, 21106076).
摘要: 微结构反应器(微反应器)是微化工系统的核心装备之一,是实现化工过程强化的重要技术基础。从微尺度非均相反应过程的基本原理出发,系统综述了近十年来微尺度下多相流动、分散和传递等方面的相关报道,系统地介绍了一些典型微尺度非均相反应过程,分析总结了微尺度反应技术的优势和特点,并对未来微尺度反应技术的发展方向提出了展望。
中图分类号:
骆广生, 王凯, 吕阳成, 王玉军, 徐建鸿. 微尺度下非均相反应的研究进展[J]. 化工学报, 2013, 64(1): 165-172.
LUO Guangsheng, WANG Kai, LV Yangcheng, WANG Yujun, XU Jianhong. Research and development of micro-scale multiphase reaction processes[J]. CIESC Journal, 2013, 64(1): 165-172.
[1] | Hessel V, Lowe H.Microchemical engineering:components, plant concepts user acceptance(Ⅰ)[J].Chem. Eng. Technol., 2003,26(1):13-24 |
[2] | Hessel V, Lowe H.Microchemical engineering:components, plant concepts, user acceptance(Ⅱ)[J].Chem.Eng.Technol., 2003,26(4):391-408 |
[3] | Hessel V, Lowe H.Microchemical engineering:components, plant concepts, user acceptance(Ⅲ)[J].Chem.Eng.Technol.,2003,26(5):531-544 |
[4] | Hartman R L, Jensen K F.Microchemical systems for continuous-flow synthesis[J].Lab Chip, 2009,9(17):2495-2507 |
[5] | Teh S Y, Lin R, Hung L H, Lee A P.Droplet microfluidics[J].Lab Chip, 2008,8(2):198-220 |
[6] | Di Carlo D.Inertial microfluidics[J].Lab Chip,2009,9(21):3038-3046 |
[7] | Lorber N, Sarrazin F, Guillot P, Panizza P, Colin A, Pavageau B, Hany C, Maestro P, Marre S, Delclos T, Aymonier C, Subra P, Prat L, Gourdon C, Mignard E.Some recent advances in the design and the use of miniaturized droplet-based continuous process:applications in chemistry and high-pressure microflows[J].Lab Chip,2011,11(5):779-787 |
[8] | Song H, Chen D L, Ismagilov R F.Reactions in droplets in microflulidic channels[J].Angew.Chem.Int.Edit., 2006,45(44):7336-7356 |
[9] | Teekateerawej S, Nishino J, Nosaka Y.Design and evaluation of photocatalytic micro-channel reactors using TiO2-coated porous ceramics[J].J.Photoch.Photobio.A, 2006,179(3):263-268 |
[10] | Gorke O, Pfeifer P, Schubert K.Highly selective methanation by the use of a microchannel reactor[J].Catal.Today, 2005,110(1/2):132-139 |
[11] | Ronnholm M R, Carucci J, Arve K, Eranen K, Salmi T.ANN modeling applied to NOx reduction with octane in a new microreactor[J].Top.Catal., 2007,42/43(1/2/3/4):195-198 |
[12] | Zanfir M, Gavriilidis A, Wille C, Hessel V.Carbon dioxide absorption in a falling film microstructured reactor:experiments and modeling[J].Ind.Eng.Chem.Res., 2005,44(6):1742-1751 |
[13] | Srinivas S, Dhingra A, Im H, Gulari E.A scalable silicon microreactor for preferential CO oxidation:performance comparison with a tubular packed-bed microreactor[J].Appl.Catal.A—Gen.,2004,274(1/2):285-293 |
[14] | Xu J H, Li S W, Tan J, Wang Y J, Luo G S.Preparation of highly monodisperse droplet in a T-junction microfluidic device[J].AIChE J., 2006,52(9):3005-3010 |
[15] | Xu J H, Li S, Chen G G, Luo G S.Formation of monodisperse microbubbles in a microfluidic device[J].AIChE J.,2006,52(6):2254-2259 |
[16] | Tice J D, Lyon A D, Ismagilov R F.Effects of viscosity on droplet formation and mixing in microfluidic channels[J].Anal.Chim.Acta, 2004,507(1):73-77 |
[17] | Wang K, Lu Y C, Xu J H, Luo G S.Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process[J].Langmuir, 2009,25(4):2153-2158 |
[18] | Wang K, Lu Y C, Xu J H, Tan J, Luo G S.Generation of micromono dispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices[J].AIChE J., 2011,57(2):299-306 |
[19] | Ge Z W, Wang W, Yang C.Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating[J].Lab Chip, 2011,11(7):1396-1402 |
[20] | Xu J H, Li S W, Tan J, Wang Y J, Luo G S.Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device[J].Langmuir, 2006,22(19):7943-7946 |
[21] | Zhao C X, Middelberg A.Two-phase microfluidic flows[J].Chem.Eng.Sci., 2011,66(7):1394-1411 |
[22] | Xu J H, Li S W, Tan J, Luo G S.Correlations of droplet formation in T-junction microfluidic devices:from squeezing to dripping[J].Microfluid.Nanofluid., 2008,5(6):711-717 |
[23] | Wang K, Lu Y C, Xu J H, Luo G S.Droplet generation in micro-sieve dispersion device[J].Microfluid. Nanofluid., 2011,10(5):1087-1095 |
[24] | Nisisako T, Torii T.Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles[J].Lab Chip, 2008,8(2):287-293 |
[25] | Yang L, Wang K, Tan J, Lu Y C, Luo G S.Experimental study of microbubble coalescence in a T-junction microfluidic device[J].Microfluid.Nanofluid.,2012,12(5):715-722 |
[26] | Christopher G F, Bergstein J, End N B, Poon M, Nguyen C, Anna S L.Coalescence and splitting of confined droplets at microfluidic junctions[J].Lab Chip, 2009,9(8):1102-1109 |
[27] | Tan Y C, Ho Y L, Lee A P.Droplet coalescence by geometrically mediated flow in microfluidic channels[J].Microfluid.Nanofluid., 2007,3(4):495-499 |
[28] | Fu T T, Funfschilling D, Ma Y, Li H Z.Scaling the formation of slug bubbles in microfluidic flow-focusing devices[J].Microfluid.Nanofluid., 2010,8(4):467-475 |
[29] | Fu T T, Ma Y G, Funfschilling D, Li H Z.Gas-liquid flow stability and bubble formation in non-Newtonian fluids in microfluidic flow-focusing devices[J].Microfluid. Nanofluid., 2011,10(5):1135-1140 |
[30] | Wang W, Xie R, Ju X J, Luo T, Liu L, Weitz D A, Chu L Y.Controllable microfluidic production of multicomponent multiple emulsions B-3915-2009[J].Lab Chip, 2011,11(9):1587-1592 |
[31] | Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A.Controllable monodisperse multiple emulsions[J].Angew.Chem.Int.Edit., 2007,46(47):8970-8974 |
[32] | Oskooei S, Sinton D.Partial wetting gas-liquid segmented flow microreactor[J].Lab Chip, 2010,10(13):1732-1734 |
[33] | Marre S, Aymonier C, Subra P, Mignard E.Dripping to jetting transitions observed from supercritical fluid in liquid microcoflows[J].Appl.Phys.Lett., 2009,95:13410513 |
[34] | Wang L Q, Fan J.Nanofluids research:key issues[J].Nanoscale Res.Lett., 2010,5(8):1241-1252 |
[35] | Sivasamy J, Wong T N, Nguyen N T, Kao L.An investigation on the mechanism of droplet formation in a microfluidic T-junction[J].Microfluid.Nanofluid., 2011,11(1):1-10 |
[36] | Galusinski C, Vigneaux P.Level-Set method and stability condition for curvature-driven flows[J].Cr.Math., 2007,344(11):703-708 |
[37] | Wang W T, Liu Z, Jin Y, Cheng Y.LBM simulation of droplet formation in micro-channels[J].Chem.Eng.J., 2011,173(3):828-836 |
[38] | Glasgow I, Aubry N.Enhancement of microfluidic mixing using time pulsing[J].Lab Chip, 2003,3(2):114-120 |
[39] | Tanthapanichakoon W, Aoki N, Matsuyama K, Mae K. Design of mixing in microfluidic liquid slugs based on a new dimensionless number for precise reaction and mixing operations[J].Chem.Eng.Sci.,2006,61(13):4220-4232 |
[40] | Li S W, Xu J H, Wang Y J, Luo G S.Mesomixing scale controlling and its effect on micromixing performance[J].Chem.Eng.Sci.,2007,62(13):3620-3626 |
[41] | Tung K Y, Li C C, Yang J T.Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer[J].Microfluid.Nanofluid.,2009,7(4):545-557 |
[42] | Lim C Y, Lam Y C.Analysis on micro-mixing enhancement through a constriction under time periodic electroosmotic flow[J].Microfluid.Nanofluid.,2012,12(1/2/3/4):127-141 |
[43] | Wang S S, Huang X Y, Yang C.Mixing enhancement for high viscous fluids in a microfluidic chamber A-3837-2011[J].Lab Chip,2011,11(12):2081-2087 |
[44] | Su Y H, Chen G W, Zhao Y C, Yuan Q.Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel[J].AIChE J.,2009,55(8):1948-1958 |
[45] | Garstecki P, Fischbach M A, Whitesides G M.Design for mixing using bubbles in branched microfluidic channels[J].Appl.Phys.Lett., 2005,86:24410824 |
[46] | Lee J, Mudawar I.Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications(Ⅱ):Heat transfer characteristics[J].Int.J.Heat Mass Tran., 2005,48(5):941-955 |
[47] | Wang K, Lu Y C, Shao H W, Luo G S.Heat-transfer performance of a liquid-liquid microdispersed system[J].Ind.Eng.Chem.Res.,2008,47(23):9754-9758 |
[48] | Zhao Y C, Chen G W, Yuan Q.Liquid-liquid two-phase mass transfer in the T-junction microchannels[J].AIChE J.,2007,53(12):3042-3053 |
[49] | Tan J, Lu Y C, Xu J H, Luo G S.Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel[J].Chem.Eng.J., 2012,185:314-320 |
[50] | Tan J, Lu Y C, Xu J H, Luo G S.Mass transfer performance of gas-liquid segmented flow in microchannels[J].Chem.Eng.J.,2012,181:229-235 |
[51] | Xu J H, Tan J, Li S W, Luo G S.Enhancement of mass transfer performance of liquid-liquid system by droplet flow in microchannels[J].Chem.Eng.J., 2008,141(1/2/3):242-249 |
[52] | Shao H W, Lu Y C, Wang K, Luo G S.An experimental study of liquid-liquid microflow pattern maps accompanied with mass transfer[J].Chinese J.Chem.Eng., 2012,20(1):18-26 |
[53] | Xu J H, Dong P F, Zhao H, Tostado C P, Luo G S.The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices[J].Langmuir,2012,28(25):9250-9258 |
[54] | Yoshida J, Nagaki A, Iwasaki T, Suga S.Enhancement of chemical selectivity by microreactors[J].Chem. Eng. Technol., 2005,28(3):259-266 |
[55] | Zhai X L, Ding S, Cheng Y H, Jin Y, Cheng Y.CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro-reactor[J].Int.J.Hydrogen Energ., 2010,35(11SI):5383-5392 |
[56] | Wang K, Lu Y C, Shao H W, Luo G S.Improving selectivity of temperature-sensitive exothermal reactions with microreactor[J].Ind.Eng.Chem.Res.,2008,47(14):4683-4688 |
[57] | Wang K, Lu Y C, Xu J H, Gong X C, Luo G S.Reducing side product by enhancing mass-transfer rate[J].AIChE J.,2006,52(12):4207-4213 |
[58] | Zhang J S, Wang K, Lu Y C, Luo G S.Beckmann rearrangement in a microstructured chemical system for the preparation of e-caprolactam[J].AIChE J., 2012,58(3):925-931 |
[59] | Tan J, Zhang J S, Lu Y C, Xu J H, Luo G S.Process intensification of catalytic hydrogenation of ethylanthraquinone with gas-liquid microdispersion[J].AIChE J.,2012,58(5):1326-1335 |
[60] | de Mas N, Gunther A, Schmidt M A, Jensen K F. Increasing productivity of microreactors for fast gas-liquid reactions:the case of direct fluorination of toluene[J].Ind.Eng.Chem.Res., 2009,48(3):1428-1434 |
[61] | Shen J N, Zhao Y C, Chen G W, Yuan Q.Investigation of nitration processes of iso-octanol with mixed acid in a microreactor[J].Chinese J.Chem.Eng.,2009,17(3):412-418 |
[62] | Illg T, Lob P, Hessel V.Flow chemistry using milli- and microstructured reactors—from conventional to novel process windows[J].Bioorgan.Med.Chem., 2010,18(11):3707-3719 |
[63] | Wang K, Wang Y J, Chen G G, Luo G S, Wang J D.Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 nanoparticles[J].Ind. Eng. Chem.Res.,2007,46(19):6092-6098 |
[64] | Wang Y J, Zhang C L, Bi S W, Luo G S.Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor[J].Powder Technol., 2010,202(1/2/3):130-136 |
[65] | Frenz L, El Harrak A, Pauly M, Begin-Colin S, Griffiths A D, Baret J C.Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles[J].Angew. Chem. Int.Edit.,2008,47(36):6817-6820 |
[66] | Cottam B F, Krishnadasan S, Demello A J, Demello J C, Shaffer M.Accelerated synthesis of titanium oxide nanostructures using microfluidic chips[J].Lab Chip,2007,7(2):167-169 |
[67] | Wang Y J, Xu D Q, Sun H T, Luo G S.Preparation of pseudoboehmite with a large pore volume and a large pore size by using a membrane-dispersion microstructured reactor through the reaction of CO2 and a NaAlO2 solution[J].Ind.Eng.Chem.Res.,2011,50(7):3889-3894 |
[68] | Du L, Tan J, Wang K, Lu Y C, Luo G S.Controllable preparation of SiO2 nanoparticles using a microfiltration membrane dispersion microreactor[J].Ind. Eng. Chem. Res., 2011,50(14):8536-8541 |
[69] | Li S W, Xu J H, Wang Y J, Luo G S.Modeling of nano-particle precipitation process in a membrane dispersion micro-structured reactor[J].Powder Technol., 2009,195(3):213-220 |
[70] | Yang Q, Wang J X, Shao L, Wang Q A, Guo F, Chen J F, Gu L, An Y T.High throughput methodology for continuous preparation of hydroxyapatite nanoparticles in a microporous tube-in-tube microchannel reactor[J].Ind. Eng. Chem.Res.,2010,49(1):140-147 |
[71] | Chan E M, Alivisatos A P, Mathies R A.High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets[J].J.Am.Chem.Soc.,2005,127(40):13854-13861 |
[72] | Nakamura H, Tashiro A, Yamaguchi Y, Miyazaki M, Watari T, Shimizu H, Maeda H.Application of a microfluidic reaction system for CdSe nanocrystal preparation:their growth kinetics and photoluminescence analysis[J].Lab Chip, 2004,4(3):237-240 |
[73] | Liu Z D, Lu Y C, Yang B D, Luo G S.Controllable preparation of poly(butyl acrylate)by suspension polymerization in a coaxial capillary microreactor[J].Ind.Eng.Chem.Res.,2011,50(21):11853-11862 |
[74] | Zourob M, Mohr S, Mayes A G, Macaskill A, Perez-Moral N, Fielden P R, Goddard N J.A micro-reactor for preparing uniform molecularly imprinted polymer beads[J].Lab Chip,2006,6(2):296-301 |
[75] | Nie Z H, Li W, Seo M, Xu S Q, Kumacheva E.Janus and ternary particles generated by microfluidic synthesis:design, synthesis, and self-assembly[J].J. Am. Chem. Soc.,2006,128(29):9408-9412 |
[76] | Wan J, Bick A, Sullivan M, Stone H A.Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles[J].Adv.Mater., 2008,20(17):3314 |
[77] | Chu L Y, Kim J W, Shah R K, Weitz D A.Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics[J].Adv.Funct.Mater.,2007,17(17):3499-3504 |
[78] | Zhang L, Geng M, Teng P, Zhao D, Lu X, Li J X. Ultrasound-promoted intramolecular direct arylation in a capillary flow microreactor[J].Ultrason.Sonochem., 2012,19(2):250-256 |
[79] | Shore G, Morin S, Organ M G.Catalysis in capillaries by Pd thin films using microwave-assisted continuous-flow organic synthesis[J].Angew.Chem.Int.Edit.,2006,45(17):2761-2766 |
[80] | Svoboda M, Slouka Z, Lindner J, Snita D.Direct evidence of concentration and potential profiles in the electrolyte diode[J].Chem.Eng.J.,2008,135(S1):S203-S209 |
[1] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[2] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[3] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[4] | 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783. |
[5] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[6] | 张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
[7] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[8] | 许非石, 杨丽霞, 陈光文. 超声微反应器内气液传质过程的介尺度强化机制[J]. 化工学报, 2022, 73(6): 2552-2562. |
[9] | 王宜飞, 王清强, 姬德生, 李申芳, 金楠, 赵玉潮. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514. |
[10] | 徐一鸣, 袁华, 刘素丽, 李平, 严佩蓉, 赵曦, 卢俊华, 赵唯, 张学兰. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193. |
[11] | 向亮, 钟子豪, 苏远海. 微反应器内连续制备拓扑结构聚合物的研究进展[J]. 化工学报, 2022, 73(12): 5275-5288. |
[12] | 方凯伦, 陈帅帅, 付家崴, 蒋新. 微反应器研究陈化过程对铜锰催化剂的影响[J]. 化工学报, 2022, 73(10): 4438-4447. |
[13] | 马永丽, 刘明言, 李琛, 胡宗定. 液固和气液固微型流态化研究进展[J]. 化工学报, 2022, 73(1): 46-58. |
[14] | 谢钦崟, 黄晓连, 李元, 李玲, 葛雪惠, 邱挺. TiO2平板微反应器设计优化及光催化性能研究[J]. 化工学报, 2021, 72(7): 3626-3636. |
[15] | 董晓锐, 王凯, 骆广生. 金纳米颗粒的微反应连续合成[J]. 化工学报, 2021, 72(7): 3823-3831. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||