[1] |
Buonomenna M G, Yave W, Golemme G. Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes[J]. RSC Adv., 2012, 29(2):10745-10773
|
[2] |
Budd P M, McKeown N B. Highly permeable polymers for gas separation membranes[J]. Polym. Chem., 2010, 1(1):63-68
|
[3] |
Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci., 1991, 62(12):165-185
|
[4] |
Aroon M A, Ismail A F, Matsuura T, Montazer-Rahmati M M. Performance studies of mixed matrix membranes for gas separation: a review[J]. Sep. Purif. Technol., 2010, 75(3):229-242
|
[5] |
Chung T S, Jiang L Y, Li Y, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Prog. Polym. Sci., 2007, 32(4):483-507
|
[6] |
Cong H L, Radosz M, Towler B F, Shen Y Q. Polymer-inorganic nanocomposite membranes for gas separation[J]. Sep. Purif.Technol., 2007, 55(3):281-291
|
[7] |
Goh P S, Ismail A F, Sanip S M, Ng B C, Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation[J]. Sep. Purif. Technol., 2011, 81(3):243-264
|
[8] |
Romero A I, Parentis M L, Habert A C, Gonzo E E. Synthesis of polyetherimide/silica hybrid membranes by the sol-gel process: influence of the reaction conditions on the membrane properties[J]. J. Mater. Sci., 2011, 46(13):4701-4709
|
[9] |
Ismail A F, Rahim N H, Mustafa A, Matsuura T, Ng B C, Abdullah S, Hashemifard S A. Gas separation performance of polyethersulfone/ multi-walled carbon nanotubes mixed matrix membranes[J]. Sep. Purif. Technol., 2011, 80(1):20-31
|
[10] |
Kumar S, Sharma A, Tripathi B. Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes[J]. Micron, 2010, 41(7):909-914
|
[11] |
Ruan S L, Gao P, Yang X G, Tu T X. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes[J]. Polymer, 2003, 44(19):5643-5654
|
[12] |
Ismail A F, Goh P S, Sanip S M, Aziz M. Transport and separation properties of carbon nanotube-mixed matrix membrane[J]. Sep. Purif. Technol., 2009, 70(1):12-26
|
[13] |
Sanip S M, Ismail A F, Goh P S, Ng B C, Abdullah M S, Soga T, Tanemura M, Yasuhiko H. Preparation and characteristics of functionalized multiwalled carbon nanotubes in polyimide mixed matrix membrane[J]. NANO, 2010, 5(4):195-202
|
[14] |
Kim S, Pechar T W, Marand E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation[J]. Desalination, 2006, 192(1/2/3):330-339
|
[15] |
Skoulidas A I, Ackerman D M, Johnson J K, Sholl D S. Rapid transport of gases in carbon nanotubes[J]. Phys. Rev. Lett., 2002, 89(18):185901
|
[16] |
Ackerman D M, Skoulidas A I, Sholl D S, Johnson J K. Diffusivities of Ar and Ne in carbon nanotubes[J]. Mol. Simul., 2003, 29(10/11): 677-684
|
[17] |
Skoulidas A I, Sholl D S, Johnson J K. Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes[J]. J. Chem. Phys., 2006, 124(5): 054708
|
[18] |
Sokhan V P, Nicholson D, Quirke N. Fluid flow in nanopores: accurate boundary conditions for carbon nanotubes[J]. J. Chem. Phys., 2002, 117(18):8531-8539
|
[19] |
Ge L, Zhu Z H, Li F, Liu S M, Wang L, Tang X G, Rudolph V. Investigation of gas permeability in carbon nanotube (CNT)-polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location[J]. J. Phys. Chem. C, 2011, 115(14):6661-6670
|
[20] |
Romyen N, Thongyai S, Praserthdam P. Alignment of carbon nanotubes in polyimide under electric and magnetic fields[J]. J. Appl. Polym. Sci., 2012, 123(6):3470-3475
|
[21] |
Oliva-Avile's A I, Avile's F, Sosa V. Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field[J]. Carbon, 2011, 49(9):2989-2997
|
[22] |
Kumar S, Srivastava S, Vijay Y K. Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes[J]. Int. J. Hydrogen Energy, 2011, 37(4):3914-3921
|
[23] |
Sharma A, Kumar S, Tripathi B. Aligned CNT/polymer nanocomposite membranes for hydrogen separation[J]. Int. J. Hydrogen Energy, 2009, 34(9):3977-3982
|
[24] |
Sharma A, Vijay Y K. Effect of electric field variation in alignment of SWNT/PC nanocomposites[J]. Int. J. Hydrogen Energy, 2012, 37(4):3945-3948
|
[25] |
Cong H L, Zhang J M, Radosz M, Shen Y Q. Carbon nanotube composite membranes of brominated poly(2, 6-diphenyl-1, 4-phenylene oxide) for gas separation[J]. J. Membr. Sci., 2007, 294(1/2): 178-185
|
[26] |
Ge L, Zhu Z H, Rudolph V. Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane[J]. Sep. Purif. Technol., 2011, 78(1):76-82
|
[27] |
Higuchi A, Agatsuma T, Uemiya S, Kojima T, Mizoguchi K, Pinnau I, Nagai K, Freeman B D. Preparation and gas permeation of immobilized fullerene membranes[J]. J. Appl. Polym. Sci., 2000, 77(3):529-537
|
[28] |
Sun Wenxiu(孙文秀), Huang Zhipeng(黄智鹏), Zhang Lu(张鹭), Zhu Jing(朱静). Studies on fluorescent properties of multi-walled carbon nanotubes before and after concentrated nitric acid treatment[J]. Spectrosc. & Spectr. Anal.(光谱学与光谱分析), 2005, 25(1):10-12
|
[29] |
Luo Y S, Xia X H, Liang Y, Zhang Y G, Ren Q F, Li J L, Jia Z J, Tang Y W. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWCNTs[J]. J. Solid State. Chem., 2007, 180(6):1928-1933
|
[30] |
Qiao Jie(乔洁), Tang Shengnan(唐胜男), Dong Chuan(董川). Studies on spectrum and electrical properties of functioned multi-walled carbon nanotubes[J]. J. SX. Univi.:Nat. Sci. Ed.(山西大学学报:自然科学版), 2008, 31(2):207-210
|
[31] |
Okotrub A V, Kanygin M A, Sedelnikova O V, Gusel'nikov A V, Belavin V V, Kotosonov A S, Bulusheva L G. Interaction of ultrasoft X-rays with arrays of aligned carbon nanotubes[J]. J. Nanophotonics, 2010, 4(1):041655-041655
|
[32] |
Stoy R D. Interactive dipole model for two-sphere system[J]. Journal of Electrostatics, 1994, 33(3): 385-392.
|
[33] |
Ma C, Zhang W, Zhu Y F, Ji L J, Zhang R P, Koratkar N, Liang J. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field[J]. Carbon, 2008, 46(4):706-710
|
[34] |
Yang X Z, Zhu Y F, Ji L J, Zhang C, Liang J. Influence of AC electric field on macroscopic network of carbon nanotubes in polystyrene[J]. J. Dispersion Sci. Technol., 2007, 28(8):1164-1168
|
[35] |
Nakatsuka Y, Kiyohara S, Ikeda M, Tanaka K, Akiwama R. Dispersion and redispersion methods for dispersoids as well as crush method for aggregated dispersoids, and devices therefor[P]: EP, 1870156. 2007-12-26
|
[36] |
Mohanty K K, Ottino J M, Davis H T. Reaction and transport in disordered composite media: introduction of percolation concepts[J]. Chem. Eng. Sci., 1982, 37(6): 905-924
|
[37] |
Bao H D, Sun Y, Xiong Z Y, Guo Z X, Yu J. Effects of the dispersion state and aspect ratio of carbon nanotubes on their electrical percolation threshold in a polymer[J]. J. Appl. Polym. Sci., 2013, 128(1):735-740
|
[38] |
Penu C, Hu G H, Fernandez A, Marchal P, Choplin L. Rheological and electrical percolation threshold of carbon nanotube/polymer nanocomposites[J]. Polym. Eng. Sci., 2012, 52(10):2173-2181
|
[39] |
Hermant M C, Smeets N M B, Meuldijk J, van Hal R C F, Heuts H P A, Klumperman B, van Herk A M, Koning C E. Influence of the molecular weight distribution on the percolation threshold of carbon nanotube-polystyrene composites[J]. E-polymers, 2009, 2009(22): 1-13
|
[40] |
Puleo A C, Muruganandam N, Paul D R. Gas sorption and transport in substituted polystyrenes[J]. J. Polym. Sci.: Part B: Polym. Phys., 1989, 27(11):2385-2406
|
[41] |
Huang L L, Zhang L Z, Shao Q, Lu L H, Lu X H, Jiang S Y, Shen W F. Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects[J]. J. Phys. Chem. C, 2007, 111(32):11912-11920
|