[1] |
Song C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal. Today, 2006, 115: 2-32
|
[2] |
Yeh J T, Resnik K P, Rygle K, Pennline H W. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia[J]. Fuel Process Technol., 2005, 86: 1533-1546
|
[3] |
Jing Yu(靖宇), Wei Li(韦力), Wang Yundong(王运东). The advances of adsorbents in the field of CO2 capture[J]. Chemical Industry and Engineering Progress(化工进展), 2011, 30:133-138
|
[4] |
Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2012, 112: 724-781
|
[5] |
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C, Olson D H, Sheppard E W, Mccullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates[J]. J. Am. Chem. Soc., 1992, 114: 10834-10843
|
[6] |
Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279: 548-552
|
[7] |
Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W. Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41[J]. Microporous Mesoporous Mat., 2003, 62: 29-45
|
[8] |
Xu X C, Song C S, Miller B G, Scaroni A W. Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41[J]. Ind. Eng. Chem. Res., 2005, 44: 8113-8119
|
[9] |
Xu X C, Song C S, Miller B G, Scaroni A W. Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous "molecular basket" adsorbent[J]. Fuel Process Technol., 2005, 86: 1457-1472
|
[10] |
Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energ. Fuel, 2002, 16: 1463-1469
|
[11] |
Yoshitake H, Koiso E, Horie H, Yoshimura H. Polyamine-functionalized mesoporous silicas: preparation, structural analysis and oxyanion adsorption[J]. Microporous Mesoporous Mat., 2005, 85: 183-194
|
[12] |
Franchi R S, Harlick P, Sayari A. Applications of pore-expanded mesoporous silica(Ⅱ): Development of a high-capacity, water-tolerant adsorbent for CO2[J]. Ind. Eng. Chem. Res., 2005, 44: 8007-8013
|
[13] |
Yue M B, Sun L B, Cao Y, Wang Y, Wang Z J, Zhu J H. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine[J]. Chem-Eur. J., 2008, 14: 3442-3451
|
[14] |
Serna-Guerrero R, Da Na E, Sayari A. New insights into the interactions of CO2 with amine-functionalized silica[J]. Ind. Eng. Chem. Res., 2008, 47: 9406-9412
|
[15] |
Harlick P J E, Sayari A. Applications of pore-expanded mesoporous silica(Ⅴ): Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance[J]. Ind. Eng. Chem. Res., 2006, 46: 446-458
|
[16] |
Bollini P, Brunelli N A, Didas S A, Jones C W. Dynamics of CO2 adsorption on amine adsorbents(Ⅰ): Impact of heat effects[J]. Ind. Eng. Chem. Res., 2012, 51: 15145-15152
|
[17] |
Bollini P, Brunelli N A, Didas S A, Jones C W. Dynamics of CO2 adsorption on amine adsorbents(Ⅱ): Insights into adsorbent design[J]. Ind. Eng. Chem. Res., 2012, 51: 15153-15162
|
[18] |
Didas S A, Kulkarni A R, Sholl D S, Jones C W. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air[J]. Chemsuschem., 2012, 5: 2058-2064
|
[19] |
Mulgundmath V P, Jones R A, Tezel F H, Thibault J. Fixed bed adsorption for the removal of carbon dioxide from nitrogen: breakthrough behaviour and modelling for heat and mass transfer[J]. Sep. Purif. Technol., 2012, 85: 17-27
|
[20] |
Sayari A, Heydari-Gorji A, Yang Y. CO2-induced degradation of amine-containing adsorbents: reaction products and pathways[J]. J. Am. Chem. Soc., 2012, 134: 13834-13842
|
[21] |
Sayari A, Belmabkhout Y, Da Na E. CO2 deactivation of supported amines: does the nature of amine matter?[J]. Langmuir, 2012, 28: 4241-4247
|
[22] |
Jing Y, Wei L, Wang Y D, Yu Y X. Molecular simulation of MCM-41: structural properties and adsorption of CO2, N2 and flue gas[J]. Chem. Eng. J., 2013, 220: 264-275
|
[23] |
Kuwahara Y, Kang D Y, Copeland J R, Brunelli N A, Didas S A, Bollini P, Sievers C, Kamegawa T, Yamashita H, Jones C W. Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports[J]. J. Am. Chem. Soc., 2012, 134: 10757-10760
|
[24] |
Qi G G, Wang Y B, Estevez L, Duan X N, Anako N, Park A, Li W, Jones C W, Giannelis E P. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules[J]. Energ. Environ. Sci., 2011, 4: 444-452
|
[25] |
Song Feifei(宋菲菲), Wang Yujun(王玉军), Luo Guangsheng(骆广生). CO2 adsorption capacity of PEI/AMP loaded on pseudoboehmite support[J]. CIESC Journal(化工学报), 2013, 64(2):574-580
|
[26] |
Liang Z, Fadhel B, Schneider C J, Chaffee A L. Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties[J]. Microporous Mesoporous Mat, 2008, 111: 536-543
|