化工学报 ›› 2014, Vol. 65 ›› Issue (7): 2629-2637.DOI: 10.3969/j.issn.0438-1157.2014.07.022
乔冰, 高晗, 王亭杰, 金涌
收稿日期:
2014-03-25
修回日期:
2014-04-05
出版日期:
2014-07-05
发布日期:
2014-07-05
通讯作者:
王亭杰
基金资助:
QIAO Bing, GAO Han, WANG Tingjie, JIN Yong
Received:
2014-03-25
Revised:
2014-04-05
Online:
2014-07-05
Published:
2014-07-05
Supported by:
摘要: 二氧化硅表面经过硅烷偶联剂γ-氨丙基三乙氧基硅烷(APTS)修饰后,在橡胶、塑料、催化剂、色谱柱、吸附剂、生物和医药等领域中具有独特的应用性能,大量文献结合特定应用体系研究二氧化硅表面修饰APTS的基本规律,以实现理想可控的修饰效果。总结这些分散性研究结果,有利于在新的基础上有效地促进研究的深入。在分析文献的基础上,系统地阐述了二氧化硅表面修饰APTS的反应机理、修饰工艺、反应动力学、修饰层稳定性和结构形貌等方面的研究进展,提出了目前研究还存在的问题和进一步的研究方向。
中图分类号:
乔冰, 高晗, 王亭杰, 金涌. 二氧化硅表面修饰硅烷偶联剂APTS的过程和机制[J]. 化工学报, 2014, 65(7): 2629-2637.
QIAO Bing, GAO Han, WANG Tingjie, JIN Yong. Process and mechanism of surface modification of silica with silane coupling agent APTS[J]. CIESC Journal, 2014, 65(7): 2629-2637.
[1] | Plueddemann E P. Silane Coupling Agents[M]. 2nd ed. New York: Plenum, 1991: 153-249 |
[2] | Wang Huanling(王奂玲), Yan Liang(闫亮), Zhao Rui(赵睿), Suo Jishuan(索继栓). Study on the synthesis and catalytic performance of aminopropyl functionalized SBA-15 mesoporous molecular sieves[J]. Journal of Molecular Catalysis (分子催化),2005, 19(1): 1-6 |
[3] | O'Gara J E, Walsh D P, Phoebe C H, Alden B A, Bouvier I, Iraneta P C, Capparella M, Walter T H. Embedded-polar-group bonded phases for high performance liquid chromatography[J]. LC GC North America, 2001, 19(6): 632 |
[4] | Vansant E F, van der Voort P, Vrancken K C. Characterization and Chemical Modification of the Silica Surface[M]. Amsterdam: Elsevier, 1995 |
[5] | Etienne M, Walcarius A. Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium[J]. Talanta, 2003, 59(6): 1173-1188 |
[6] | Jal P K, Patel S, Mishra B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions[J]. Talanta, 2004, 62(5): 1005-1028 |
[7] | Walcarius A, Etienne M, Delacote C. Uptake of inorganic HgII by organically modified silicates: influence of pH and chloride concentration on the binding pathways and electrochemical monitoring of the processes[J]. Analytica Chimica Acta, 2004, 508(1): 87-98 |
[8] | Kłonkowski A M, Grobelna B, Widernik T, Jankowska-Frydel A, Mozgawa W. The coordination state of copper(Ⅱ) complexes anchored and grafted onto the surface of organically modified silicates [J]. Langmuir, 1999, 15(18): 5814-5819 |
[9] | Oh S, Kang T, Kim H, Moon J, Hong S, Yi J. Preparation of novel ceramic membranes modified by mesoporous silica with 3-aminopropyltriethoxysilane (APTES) and its application to Cu2+ separation in the aqueous phase[J]. Journal of Membrane Science, 2007, 301(1/2): 118-125 |
[10] | Briand E, Humblot V, Landoulsi J, Petronis S, Pradier C M, Kasemo B, Svedhem S. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces[J]. Langmuir, 2011, 27(2): 678-685 |
[11] | Kim J, Cho J, Seidler P M, Kurland N E, Yadavalli V K. Investigations of chemical modifications of amino-terminated organic films on silicon substrates and controlled protein immobilization[J]. Langmuir, 2010, 26(4): 2599-2608 |
[12] | Levy L, Sahoo Y, Kim K S, Bergey E J, Prasad P N. Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications[J]. Chemistry of Materials, 2002, 14(9): 3715-3721 |
[13] | Liu Z G, Li Z, Zhou H L, Wei G, Song Y H, Wang L. Imaging DNA molecules on mica surface by atomic force microscopy in air and in liquid[J]. Microscopy Research and Technique, 2005, 66(4): 179-185 |
[14] | Nehilla B J, Popat K C, Vu T Q, Chowdhury S, Standaert R F, Pepperberg D R, Desai T A. Neurotransmitter analog tethered to a silicon platform for neuro-BioMEMS applications[J]. Biotechnology and Bioengineering, 2004, 87(5): 669-674 |
[15] | Takei T, Kato K, Meguro A, Chikazawa M. Infrared spectra of geminal and novel triple hydroxyl groups on silica surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150(1/2/3): 77-84 |
[16] | Yermakov Y L, Kuznetsov B N, Zakharov V A. Catalysis by Supported Complexes[M]. Amsterdam: Elsevier Scientific Publishing Com., 1981: 59-61 |
[17] | Ek S, Iiskola E I, Niinistö L, Vaittinen J, Pakkanen T T, Root A. A 29Si and 13C CP/MAS NMR study on the surface species of gas-phase-deposited γ-aminopropylalkoxysilanes on heat-treated silica[J]. The Journal of Physical Chemistry B, 2004, 108(31): 11454-11463 |
[18] | Acres R G, Ellis A V, Alvino J, Lenahan C E, Khodakov D A, Metha G F, Andersson G G. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces[J]. Journal of Physical Chemistry C, 2012, 116(10): 6289-6297 |
[19] | Zhu M J, Lerum M Z, Chen W. How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica[J]. Langmuir, 2012, 28(1): 416-423 |
[20] | Vrancken K C, Casteleyn E, Possemiers K, van der Voort P, Vansant E F. Modelling of the reaction-phase interaction of γ-aminopropyltriethoxysilane with silica[J]. J. Chem. Soc., Faraday Trans., 1993, 89: 2037-2040 |
[21] | Morrall S W, Leyden D E. Silanes, Surfaces, and Interfaces[M]. New York: Gordon and Breach, 1985: 501 |
[22] | Vrancken K C, Possemiers K, van der Voort P, Vansant E F. Surface modification of silica gels with aminoorganosilanes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 98(3): 235-241 |
[23] | Wang Gang(王刚), Yan Feng(颜峰), Teng Zhaogang(滕兆刚), Yang Wensheng(杨文胜), Li Tiejin(李铁津). The surface modification of silica with APTS[J]. Progress in Chemistry(化学进展), 2006, 18(2/3): 238-245 |
[24] | Kanan S A, Tze W, Tripp C P. Method to double the surface concentration and control the orientation of adsorbed (3-aminopropyl)dimethylethoxysilane on silica powders and glass slides[J]. Langmuir, 2002, 18(17): 6623-6627 |
[25] | Smith E A, Chen W. How to prevent the loss of surface functionality derived from aminosilanes[J]. Langmuir, 2008, 24(21): 12405-12409 |
[26] | Pasternack R M, Amy S R, Chabal Y J. Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature[J]. Langmuir, 2008, 24(22): 12963-12971 |
[27] | Howarter J A, Youngblood J P. Optimization of silica silanization by 3-aminopropyltriethoxysilane[J]. Langmuir, 2006, 22(26): 11142-11147 |
[28] | Aissaoui N, Bergaoui L, Landoulsi J, Lambert J F, Boujday S. Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption[J]. Langmuir, 2012, 28(1): 656-665 |
[29] | Fiorilli S, Rivolo P, Descrovi E, Ricciardi C, Pasquardini L, Lunelli L, Vanzetti L, Pederzolli C, Onida B, Garrone E. Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates[J]. Journal of Colloid and Interface Science, 2008, 321(1): 235-241 |
[30] | Simon A, Cohen-Bouhacina T, Porte M C, Aime J P, Baquey C. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface[J]. Journal of Colloid and Interface Science, 2002, 251(2): 278-283 |
[31] | Wang W, Vaughn M W. Morphology and amine accessibility of (3-aminopropyl) triethoxysilane films on glass surfaces[J]. Scanning, 2008, 30(2): 65-77 |
[32] | Shimizu I, Okabayashi H, Taga K, Yoshino A, Nishio E, Oconnor C J. Raman scattering study of the interaction of 3-aminopropyltriethoxy silane on silica gel. Time-dependent conformational change of aminopropylsilyl segments[J]. Vibrational Spectroscopy, 1997, 14(1): 125-132 |
[33] | Vandenberg E T, Bertilsson L, Liedberg B, Uvdal K, Erlandsson R, Elwing H, Lundström I. Structure of 3-aminoproply triethoxy silane on silicon oxide[J]. Journal of Colloid and Interface Science, 1991, 147: 103-118 |
[34] | Lazghab M, Saleh K, Guigon P. Functionalisation of porous silica powders in a fluidised-bed reactor with glycidoxypropyltrimethoxysilane (GPTMS) and aminopropyltriethoxysilane (APTES)[J]. Chemical Engineering Research & Design, 2010, 88(5/6): 686-692 |
[35] | Cuoq F, Masion A, Labille J, Rose J, Ziarelli F, Prelot B, Bottero J Y. Preparation of amino-functionalized silica in aqueous conditions[J]. Applied Surface Science, 2013, 266: 155-160 |
[36] | Zhang F X, Srinivasan M P. Self-assembled molecular films of aminosilanes and their immobilization capacities[J]. Langmuir, 2004, 20(6): 2309-2314 |
[37] | Perruchot C, Chehimi M M, Delamar M, Fievet F. Use of aminosilane coupling agent in the synthesis of conducting, hybrid polypyrrole-silica gel particles[J]. Surface and Interface Analysis, 1998, 26(9): 689-698 |
[38] | Cai C J, Shen Z G, Xing Y S, Ma S L. Surface topography and character of gamma-aminopropyltriethoxysilane and dodecyltrimethoxysilane films adsorbed on the silicon dioxide substrate via vapour phase deposition[J]. Journal of Physics D-Applied Physics, 2006, 39(22): 4829-4837 |
[39] | Choi H, Chen I. Surface-modified silica colloid for diagnostic imaging[J]. Journal of Colloid and Interface Science, 2003, 258(2): 435-437 |
[40] | Ek S, Iiskola E I, Niinisto L. Gas-phase deposition of aminopropylalkoxysilanes on porous silica[J]. Langmuir, 2003, 19(8): 3461-3471 |
[41] | Ek S, Iiskola E I, Niinisto L, Pakkanen T T, Root A. New bonding modes of gas-phase deposited gamma-aminopropyltriethoxysilane on silica studied by Si-29 CP/MAS NMR[J]. Chemical Communications, 2003, 16: 2032-2033 |
[42] | Ek S, Iiskola E I, Niinisto L, Vaittinen J, Pakkanen T T, Keranen J, Auroux A. Atomic layer deposition of a high-density aminopropylsiloxane network on silica through sequential reactions of gamma-aminopropyltrialkoxysilanes and water[J]. Langmuir, 2003, 19(25): 10601-10609 |
[43] | Juvaste H, Iiskola E I, Pakkanen T T. Preparation of new modified catalyst carriers[J]. Journal of Molecular Catalysis A-Chemical, 1999, 150(1/2): 1-9 |
[44] | Rai V R, Agarwal S. Mechanism of self-catalytic atomic layer deposition of silicon dioxide using 3-aminopropyl triethoxysilane, water, and ozone[J]. Chemistry of Materials, 2011, 23(9): 2312-2316 |
[45] | Suntola T. Surface chemistry of materials deposition at atomic layer level[J]. Applied Surface Science, 1996, 100: 391-398 |
[46] | Shimizu I, Okabayashi H, Taga K, Nishio E, O'Connor C J. Diffuse reflectance infrared Fourier transform spectral study of the thermal and adsorbed-water effects of a 3-aminopropyltriethoxysilane layer modified onto the surface of silica gel[J]. Vibrational Spectroscopy, 1997, 14(1): 113-123 |
[47] | Yoshino A, Okabayashi H, Shimizu I, Oconnor C J. Kinetics of interaction of 3-aminopropyltriethoxysilane with silica gel using elemental analysis and Si-29 NMR spectra[J]. Colloid and Polymer Science, 1997, 275(7): 672-680 |
[48] | Shimizu I, Yoshino A, Okabayashi H, Nishio E J O C. Kinetics of interaction of 3-aminopropyltriethoxysilane on a silica gel surface using elemental analysis and diffuse reflectance infrared Fourier transform spectra[J]. J. Chem. Soc., Faraday Trans., 1997, 93: 1971-1979 |
[49] | Albert K, Brindle R, Schmid J, Buszewski B, Bayer E. CP/MAS NMR investigations of silica gel surfaces modified with aminopropylsilane[J]. Chromatographia, 1994, 38(5/6): 283-290 |
[50] | Siqueira Petri D F, Wenz G, Schunk P, Schimmel T. An improved method for the assembly of amino-terminated monolayers on SiO2 and the vapor deposition of gold layers[J]. Langmuir, 1999, 15(13): 4520-4523 |
[51] | Moon J H, Shin J W, Kim S Y, Park J W. Formation of uniform aminosilane thin layers: an imine formation to measure relative surface density of the amine group[J]. Langmuir, 1996, 12(20): 4621-4624 |
[52] | Kim J, Holinga G J, Somorjai G A. Curing induced structural reorganization and enhanced reactivity of amino-terminated organic thin films on solid substrates: observations of two types of chemically and structurally unique amino groups on the surface[J]. Langmuir, 2011, 27(9): 5171-5175 |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[3] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[6] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[7] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[8] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[9] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[10] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[11] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[12] | 陈余, 郑晓妍, 赵辉, 王二强, 李杰, 李春山. Pickering乳液催化非均相羟醛缩合反应研究[J]. 化工学报, 2023, 74(1): 449-458. |
[13] | 周桓, 张梦丽, 郝晴, 吴思, 李杰, 徐存兵. 硫酸镁型光卤石转化钾盐镁矾的过程机制与动态规律[J]. 化工学报, 2022, 73(9): 3841-3850. |
[14] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[15] | 戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||