化工学报 ›› 2016, Vol. 67 ›› Issue (S2): 245-254.DOI: 10.11949/j.issn.0438-1157.20160576
袁培新1, 郑晨昱1, 崔宏达1, 万莹2, 姚传广1, 宋宏鑫1, 邓盛元1
收稿日期:
2016-05-03
修回日期:
2016-07-14
出版日期:
2016-12-30
发布日期:
2016-12-30
通讯作者:
邓盛元
基金资助:
国家自然科学基金项目(21305067);江苏省自然科学基金项目(BK20130754);教育部高等学校博士点基金之新教师类课题(0133219120019)。
YUAN Peixin1, ZHENG Chenyu1, CUI Hongda1, WAN Ying2, YAO Chuanguang1, SONG Hongxin1, DENG Shengyuan1
Received:
2016-05-03
Revised:
2016-07-14
Online:
2016-12-30
Published:
2016-12-30
Supported by:
supported by the National Natural Science Foundation of China(21305067,61371039),the Natural Science Foundation of Jiangsu Province(BK20130754),Ph.D.Fund of Ministry of Education for Young Teachers(0133219120019).
摘要:
研究了一种高效的表面等离子共振(SPR)基DNA分析方法,利用非共价功能化的石墨烯纳米片作为基底,并以酶催化诱导的聚合作为质量中继。该策略有多方面的目标:首先,通过原位优化的石墨烯薄膜的电生成,该过程由原子力显微拓扑图表征,来敏化总体的SPR输出;其次,用于调制镍离子螯合的胺基三乙酸支架,其吸附在石墨烯支撑的苝基衍生物表面,上端生物素化捕获探针可以自组装,并保有一定的方向;最后,通过辣根过氧化物酶标记的报告单元,实时地将苯胺添加剂转化为聚苯胺沉淀,以协同实现信号的放大。运用上述配置,获得了一个对特异性DNA靶标精确且可重现传感的平台,检测下限达到飞摩尔水平,从而展现了以二维纳米材料为独特SPR基础设施的有益探索和开发。该“自下而上”的建构、与置顶“自上而下”的重量反应器,极有可能拓展并移植用于蛋白质的定量。
中图分类号:
袁培新, 郑晨昱, 崔宏达, 万莹, 姚传广, 宋宏鑫, 邓盛元. 电沉积石墨烯的非共价功能化用于SPR核酸传感的协同增敏[J]. 化工学报, 2016, 67(S2): 245-254.
YUAN Peixin, ZHENG Chenyu, CUI Hongda, WAN Ying, YAO Chuanguang, SONG Hongxin, DENG Shengyuan. Noncovalent functionalization of graphene for sensitizing SPR-based DNA sensing synergistically with biocatalytic polymerization[J]. CIESC Journal, 2016, 67(S2): 245-254.
[1] | FANG Y, CHEN S, WANG W, et al.Real-time monitoring of phosphorylation kinetics with self-assembled nano-oscillators[J]. AngewandteChemie International Edition, 2015, 54(8): 2538-2542. |
[2] | STERN L, GRAJOWER M, LEVY U.Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system[J]. Nature Communications, 2014, 5:4865. |
[3] | WIJAYA E, LENAERTS C, MARICOT S, et al.Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies[J]. Current Opinion in Solid State and Materials Science, 2011, 15(5): 208-224. |
[4] | CIBULSKIS K, LAWRENCE M S, CARTER S L,et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples[J]. Nature Biotechnology, 2013, 31(3): 213-219. |
[5] | DEKOSKY B J, IPPOLITO G C, DESCHNER R P,et al. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire[J]. Nature Biotechnology, 2013, 31(2): 166-169. |
[6] | PATTANAYAK V, LIN S, GUILINGER J P,et al.High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nature Biotechnology, 2013, 31(9): 839-843. |
[7] | GUO X.Surface plasmon resonance based biosensor technique: a review[J]. Journal of Biophotonics, 2012, 5(7): 483-501. |
[8] | DING X, LIOW C H, ZHANG M,et al.Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window[J]. Journal of the American Chemical Society, 2014, 136(44): 15684-15693. |
[9] | KRISHNAN S, MANI V, WASALATHANTHRI D,et al. Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels[J]. Angewandte Chemie International Edition, 2011, 50(5): 1175-1178. |
[10] | LI X, WANG Y, WANG L,et al.A surface plasmon resonance assay coupled with a hybridization chain reaction for amplified detection of DNA and small molecules[J]. Chemical Communications, 2014, 50(39): 5049-5052. |
[11] | YUAN P X, DENG S Y, XIN P,et al.Mass effect of redox reactions: a novel mode for surface plasmon resonance-based bioanalysis[J]. Biosensors and Bioelectronics, 2015, 74: 183-189. |
[12] | COSNIER S, HOLZINGER M.Electrosynthesized polymers for biosensing[J]. Chemical Society Reviews, 2011, 40(5): 2146-2156. |
[13] | GUO L, XU Y, FERHAN A R,et al.Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit[J]. Journal of the American Chemical Society, 2013, 135(33): 12338-12345. |
[14] | JIM NEZ-MONROY K L, KICK A, EERSELS K,et al. Surface plasmon resonance-based DNA microarrays: comparison of thiol and phosphorothioate modified oligonucleotides[J]. Physica Status Solidi (A), 2013, 210(5): 918-925. |
[15] | TANG C, PAUL A, ALAM M P,et al.A short DNA sequence confers strong bleomycin binding to hairpin DNAs[J]. Journal of the American Chemical Society, 2014, 136(39): 13715-13726. |
[16] | CAI B, HUANG L, ZHANG H,et al.Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection[J]. Biosensors and Bioelectronics, 2015, 74: 329-334. |
[17] | SONG C, XIE G, WANG L,et al.DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor[J]. Biosensors and Bioelectronics, 2014, 58: 68-74. |
[18] | WANG F, LIU Z, WANG B,et al.Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers[J]. Angewandte Chemie International Edition, 2014, 53(2): 424-428. |
[19] | LIU X, QIAN T, XU N,et al.Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites[J]. Carbon, 2015, 92: 348-353. |
[20] | SUBRAMANIAN P, BARKA-BOUAIFEL F, BOUCKAERT J,et al.Graphene-coated surface plasmon resonance interfaces for studying the interactions between bacteria and surfaces[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5422-5431. |
[21] | ZAGORODKO O, SPADAVECCHIA J, SERRANO A Y,et al.Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces[J]. Analytical Chemistry, 2014, 86(22): 11211-11216. |
[22] | PEI H, LU N, WEN Y,et al.A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing[J]. Advanced Materials, 2010, 22(42): 4754-4758. |
[23] | KUMAR V D, KUMAR V D, MALATHI S,et al.Intruder identification using footprint recognition with PCA and SVM classifiers[C]//Advanced Materials Research,2014, 984: 1345-1349. |
[24] | CAMPOSEO A, PERSANO L, MANCO R,et al.Metal-enhanced near-infrared fluorescence by micropatterned gold nanocages[J]. ACS Nano, 2015, 9(10): 10047-10054. |
[25] | GELDMEIER J, KÖNIG T, MAHMOUD M A,et al. Tailoring the plasmonic modes of a grating-nanocube assembly to achieve broadband absorption in the visible spectrum[J]. Advanced Functional Materials, 2014, 24(43): 6797-6805. |
[26] | LIU C, CUI D, LI H.A hard-soft microfluidic-based biosensor flow cell for SPR imaging application[J]. Biosensors and Bioelectronics, 2010, 26(1): 255-261. |
[27] | LOSURDO M, BERGMAIR I, DASTMALCHI B,et al. Graphene as an electron shuttle for silver deoxidation: removing a key barrier to plasmonics and metamaterials for SERS in the visible[J]. Advanced Functional Materials, 2014, 24(13): 1864-1878. |
[28] | CHEN F, SURKUS A E, HE L,et al.Selective catalytic hydrogenation of heteroarenes with N-graphene-modified cobalt nanoparticles (Co3O4-Co/NGr@ α-Al2O3)[J]. Journal of the American Chemical Society, 2015, 137(36): 11718-11724. |
[29] | HAN J, SA Y J, SHIM Y,et al.Coordination chemistry of[Co (acac)2]with N-doped graphene: implications for oxygen reduction reaction reactivity of organometallic Co-O4-N species[J]. Angewandte Chemie International Edition, 2015, 54(43): 12622-12626. |
[30] | HOU J, ZHENG Y, SU Y,et al.Macroscopic and strong ribbons of functionality-rich metal oxides from highly ordered assembly of unilamellar sheets[J]. Journal of the American Chemical Society, 2015, 137(40): 13200-13208. |
[31] | XIANG Q, CHENG B, YU J.Graphene-based photocatalysts for solar-fuel generation[J]. Angewandte Chemie International Edition, 2015, 54(39): 11350-11366. |
[32] | YAN H, CHENG H, YI H,et al.Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1, 3-butadiene[J]. Journal of the American Chemical Society, 2015, 137(33): 10484-10487. |
[33] | DAS M R, SARMA R K, SAIKIA R,et al.Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity[J]. Colloids and Surfaces B: Biointerfaces, 2011, 83(1): 16-22. |
[34] | SUBRAMANIAN P, LESNIEWSKI A, KAMINSKA I,et al. Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces[J]. Biosensors and Bioelectronics, 2013, 50: 239-243. |
[35] | XUE T, CUI X, GUAN W,et al.Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing[J]. Biosensors and Bioelectronics, 2014, 58: 374-379. |
[36] | YANG H W, LIN C W, HUA M Y, et al.Combined detection of cancer cells and a tumor biomarker using an immunomagnetic sensor for the improvement of prostate-cancer diagnosis[J]. Advanced Materials, 2014, 26(22): 3662-3666. |
[37] | ZHANG Y, BAI X, WANG X,et al.Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection[J]. Analytical Chemistry, 2014, 86(19): 9459-9465. |
[38] | ZHU N, HAN S, GAN S,et al.Graphene paper doped with chemically compatible Prussian blue nanoparticles as nanohybrid electrocatalyst[J]. Advanced Functional Materials, 2013, 23(42): 5297-5306. |
[39] | EIGLER S, HIRSCH A.Chemistry with graphene and graphene oxide-challenges for synthetic chemists[J]. Angewandte Chemie International Edition, 2014, 53(30): 7720-7738. |
[40] | HOLZINGER M, BAUR J, HADDAD R, et al. Multiple functionalization of single-walled carbon nanotubes by dip coating[J]. Chemical Communications, 2011, 47(8): 2450-2452. |
[41] | WANG W, HAN N, LI R,et al. Supercharged fluorescent protein as a versatile probe for the detection of glycosaminoglycans in vitro and in vivo[J]. Analytical Chemistry, 2015, 87(18): 9302-9307. |
[42] | JIANG N, SHAO L, WANG J.(Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths[J]. Advanced Materials, 2014, 26(20):3282-3289. |
[43] | WANG Z G, ZHAN P, DING B.Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline[J]. ACS Nano, 2013, 7(2): 1591-1598. |
[44] | XU Y, LI K, QIN W, et al.Unraveling the role of hydrogen peroxide in α-synuclein aggregation using an ultrasensitive nanoplasmonic probe[J]. Analytical Chemistry, 2015, 87(3): 1968-1973. |
[45] | PRATHAP M U A, AKHILESH KUMAR C, SAWANT S N, et al.Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane.[J]. Analytical Chemistry, 2012, 84(15):6672-6678. |
[46] | YU X, LI Y, WU J, et al.Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker[J]. Analytical Chemistry, 2014, 86(9): 4501-4507. |
[47] | QIU X, LIU X, ZHANG W, et al.Dynamic monitoring of microRNA-DNA hybridization using DNAase-triggered signal amplification[J]. Analytical Chemistry, 2015, 87(12): 6303-6310. |
[48] | HADDAD R, HOLZINGER M, VILLALONGA R, et al. Pyrene-adamantane-β-cyclodextrin: an efficient host-guest system for the biofunctionalization of SWCNT electrodes[J]. Carbon, 2011, 49(7): 2571-2578. |
[49] | WANG L, ZHU C, HAN L, et al.Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene[J]. Chemical Communications, 2011, 47(27): 7794-7796. |
[50] | BAO Q, LOH K P.Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. Acs Nano, 2012, 6(5):3677-3694. |
[51] | BONACCORSO F, SUN Z, HASAN T, et al.Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622. |
[52] | HARRISON K L, BIEDERMANN L B, ZAVADIL K R. Mechanical properties of water-assembled graphene oxide Langmuir monolayers: guiding controlled transfer.[J]. Langmuir, 2015, 31(36):9825-9832. |
[53] | ZHANG Q, XU X, LI H, et al.Mechanically robust honeycomb graphene aerogel multifunctional polymer composites[J]. Carbon, 2015, 93:659-670. |
[54] | LIU X, QIAN T, XU N, et al.Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites[J]. Carbon, 2015, 92:348-353. |
[55] | KUNDU A, LAYEK R K, KUILA A, et al.Highly fluorescent graphene oxide-poly(vinyl alcohol) hybrid: an effective material for specific Au3+ ion sensors[J]. Acs Applied Materials & Interfaces, 2012, 4(10):5576-5582. |
[56] | YU X, PARK H S.Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors[J]. Carbon, 2014, 77: 59-65. |
[57] | BAUR J, HOLZINGER M, GONDRAN C, et al. Immobilization of biotinylated biomolecules onto electropolymerized poly (pyrrole-nitrilotriacetic acid)-Cu2+ film[J]. Electrochemistry Communications, 2010, 12(10): 1287-1290. |
[58] | SCHASFOORT R B M, TUDOS A J.Handbook of Surface Plasmon Resonance[M]. Royal Society of Chemistry, 2008. |
[59] | KUZMIN D A, BYCHKOV I V, SHAVROV V G. Electro-magnetic waves reflection, transmission and absorption by graphene-magnetic semiconductor-graphene sandwich-structure in magnetic field: Faraday geometry[J]. Photonics and Nanostructures-Fundamentals and Applications, 2014, 12(5): 473-481. |
[60] | FERRARI A C, BASKO D M.Raman spectroscopy as a versatile tool for studying the properties of graphene.[J]. Nature Nanotechnology, 2013, 8(4):235-246. |
[61] | MATA G, LUEDTKE N W.Fluorescent probe for proton-coupled DNA folding revealing slow exchange of i-motif and duplex structures[J]. Journal of the American Chemical Society, 2015, 137(2): 699-707. |
[62] | LAI G, ZHANG H, TAMANNA T, et al.Ultrasensitive immunoassay based on electrochemical measurement of enzymatically produced polyaniline[J]. Analytical Chemistry, 2014, 86(3): 1789-1793. |
[63] | PENG Y, YI G, GAO Z.A highly sensitive microRNA biosensor based on ruthenium oxide nanoparticle-initiated polymerization of aniline[J]. Chemical Communications, 2010, 46(48): 9131-9133. |
[64] | SHENG Q, WANG M, ZHENG J.A novel hydrogen peroxide biosensor based on enzymatically induced deposition of polyaniline on the functionalized graphene-carbon nanotube hybrid materials[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 1070-1077. |
[65] | WANG L, WU X L, XU W H, et al.Stable organic-inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment[J]. ACS Applied Materials & Interfaces, 2012, 4(5): 2686-2692. |
[66] | WEI D, LI H, HAN D, et al.Properties of graphene inks stabilized by different functional groups[J]. Nanotechnology, 2011, 22(24): 245702. |
[67] | DEGLIANGELI F, KSHIRSAGAR P, BRUNETTI V, et al. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes[J]. Journal of the American Chemical Society, 2014, 136(6): 2264-2267. |
[68] | GUO S, YANG F, ZHANG Y, et al.Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease[J]. Analytical Methods, 2014, 6(11): 3598-3603. |
[69] | SONG C, WANG G Y, KONG D M.A facile fluorescence method for versatile biomolecular detection based on pristine α-Fe2O3 nanoparticle-induced fluorescence quenching[J]. Biosensors and Bioelectronics, 2015, 68: 239-244. |
[1] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[2] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[3] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[4] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[5] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[6] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[7] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[8] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[9] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[10] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[11] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[12] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[13] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[14] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[15] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||