化工学报 ›› 2017, Vol. 68 ›› Issue (3): 998-1004.DOI: 10.11949/j.issn.0438-1157.20161709

• 过程系统工程 • 上一篇    下一篇

一种基于紫外可见光谱的多金属离子浓度检测方法

朱红求, 陈俊名, 尹冬航, 李勇刚, 阳春华   

  1. 中南大学信息科学与工程学院, 湖南 长沙 410083
  • 收稿日期:2016-12-05 修回日期:2016-12-12 出版日期:2017-03-05 发布日期:2017-03-05
  • 通讯作者: 陈俊名,cjmrise@outlook.com
  • 基金资助:

    国家自然科学基金重点项目(61533021);国家创新研究群体科学基金项目(61621062)。

A UV-Vis analytical method for polymetallic solutions

ZHU Hongqiu, CHEN Junming, YIN Donghang, LI Yonggang, YANG Chunhua   

  1. School of Information Science & Engineering, Central South University, Changsha 410083, Hunan, China
  • Received:2016-12-05 Revised:2016-12-12 Online:2017-03-05 Published:2017-03-05
  • Contact: 10.11949/j.issn.0438-1157.20161709
  • Supported by:

    supported by the State Key Program of National Natural Science Foundation of China (61533021) and the Foundation for Innovative Research Groups of National Natural Science Foundation of China (61621062).

摘要:

针对Cu2+,Co2+,Zn2+ 3种金属离子混合溶液的紫外可见分光光度法(UV-Vis)光谱重叠而难以检测的问题,提出了一种基于改进型Monte Carle无信息变量消除(MC-UVE)方法的多金属离子浓度检测方法。在MC-UVE的基础上引入指数衰减函数(EDF),提出了一种改进的MC-UVE方法,并基于该方法对料液的紫外-可见光谱进行波长筛选;然后,利用筛选出的波长建立PLS模型并进行各组分浓度检测计算;最后,分别对基于MC-UVE方法和改进型MC-UVE方法PLS模型的计算结果进行对比分析。结果表明:改进型MC-UVE方法可筛选出对模型贡献度高的变量,基于该变量选择方法的PLS模型精度高。

关键词: 紫外可见光谱, Monte Carle无信息变量消除, 变量筛选, 重叠光谱分离, 偏最小二乘法, 光化学, 计算化学

Abstract:

A polymetallic analytical method based on an improved Monte Carlo uninformative variable elimination (MC-UVE) was proposed to determine ion concentration by ultraviolet visible (UV-Vis) spectra of Cu2+, Co2+ and Zn2+ mixture solution. The improved MC-UVE, developed by incorporating exponential attenuation function (EDF), was applied to selecting wavelength of UV-Vis spectra. And the partial least squares calibration model was built on concentrations of polymetallic components at the selected wavelength. Experimental results showed that the improved MC-UVE could select higher contributing model variables and develop more precise PLS model than MC-UVE.

Key words: UV-Vis spectrometry, MC-UVE, wavelength selection, overlapping spectral separation, PLS, photochemistry, computational chemistry

中图分类号: