化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4166-4176.doi: 10.11949/0438-1157.20210172

• 催化、动力学与反应器 • 上一篇    下一篇

构建Bi2O2CO3/g-C3N4异质结光催化完全氧化苯甲醇至苯甲醛

李燕1(),蹇亮1,茅沁怡1,潘成思1,蒋平平1,朱永法2,董玉明1()   

  1. 1.江南大学化学与材料工程学院,光响应功能分子材料国家级国际联合研究中心,江苏 无锡 214122
    2.清华大学化学系,北京 100084
  • 收稿日期:2021-01-26 修回日期:2021-05-07 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 董玉明 E-mail:1911428406@qq.com;dongym@jiangnan.edu.cn
  • 作者简介:李燕(1996—),女,硕士研究生,1911428406@qq.com
  • 基金资助:
    国家自然科学基金项目(21676123);江苏省自然科学基金项目(BK20161127)

Construction of Bi2O2CO3/g-C3N4 heterojunction photocatalytic complete oxidation of benzyl alcohol to benzaldehyde

Yan LI1(),Liang JIAN1,Qinyi MAO1,Chengsi PAN1,Pingping JIANG1,Yongfa ZHU2,Yuming DONG1()   

  1. 1.School of Chemical and Material Engineering, Jiangnan University, International Joint Research Center for Photoresponsive Molecules and Materials, Wuxi 214122, Jiangsu, China
    2.Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2021-01-26 Revised:2021-05-07 Published:2021-08-05 Online:2021-08-05
  • Contact: Yuming DONG E-mail:1911428406@qq.com;dongym@jiangnan.edu.cn

摘要:

在保证选择性的前提下高效光催化氧化苯甲醇为苯甲醛仍然是当下面临的一个巨大挑战。g-C3N4的价带位置适中,具有温和的氧化能力,已被开发用来光催化氧化苯甲醇以保证反应的选择性,但由于其电子空穴复合率高导致反应的转化率难以提升。由于Bi2O2CO3的超薄片层结构不仅可以增加催化剂的比表面积形成更多的活性中心,同时可以形成局部电场,更有效地分离光生电子-空穴对,因此通过构建Bi2O2CO3/g-C3N4异质结来加快光生载流子分离进而提升反应速率。其中最优的催化剂可以在反应9 h后使苯甲醇完全氧化为苯甲醛,降低了分离成本。

关键词: 异质结, 氧化, 光化学, 醇, 苯甲醛

Abstract:

Under the premise of ensuring selectivity, high-efficiency photocatalytic oxidation of benzyl alcohol to benzaldehyde is still a huge challenge. g-C3N4 has a moderate valence band position and mild oxidation ability. It has been developed for photocatalytic oxidation of benzyl alcohol to ensure the selectivity of the reaction, but the high electron-hole recombination rate makes it difficult to increase the conversion rate of the reaction. In this work, alternate Bi2O22+ and CO32- orthogonal symbiotic layer within Bi2O2CO3 can not only increase the specific surface area of catalyst to form more active center, but also can construct local electric field to separate electronic-hole pair more efficiently. Therefore, we build the Bi2O2CO3/g-C3N4 heterojunction structure to speed up the carrier separation to enhance the reaction rate. The best photocatalyst can achieve both 100% selectivity and conversion after 9 h reaction, which reduces the cost of separation and has a huge development prospect. In this paper, the in-situ construction of the heterojunction accelerates the charge separation to promote the reaction. Its preparation method, reaction mechanism, energy level structure, etc., all have a certain guiding role in organic conversion reactions.

Key words: heterojunction, oxidation, photochemistry, alcohol, benzaldehyde

中图分类号: 

  • O 643

图1

催化剂形貌表征(a),(b) 1.5-Bi2O2CO3/g-C3N4 的SEM图;(c)~(e) g-C3N4、Bi2O2CO3、1.5-Bi2O2CO3/g-C3N4 的TEM图; (f) 1.5-Bi2O2CO3/g-C3N4 的高分辨透射电镜图"

图2

g-C3N4与1.5-Bi2O2CO3/g-C3N4的N2吸附-解吸等温线(a)和相应的孔径分布曲线(b)"

图3

g-C3N4、Bi2O2CO3、x-Bi2O2CO3/g-C3N4 (x=0.5、1.5、2.5、3.5)的XRD谱图"

图4

1.5-Bi2O2CO3/g-C3N4 中 C 1s (a)、 N 1s (b)、 O 1s (c)、 Bi 4f (d)的高分辨率XPS光谱图"

图5

Bi2O2CO3、g-C3N4及1.5-Bi2O2CO3/g-C3N4的紫外-可见漫反射吸收光谱图(a); Bi2O2CO3、g-C3N4的Tauc曲线 (b); g-C3N4 (c)和 Bi2O2CO3 (d) 的Mott-Schottky图"

图6

g-C3N4、Bi2O2CO3、x-Bi2O2CO3/g-C3N4 (x=0.5、1.5、2.5、3.5)反应活性对比[测试条件:30 mg催化剂,300 W氙灯(AM 1.5G),光照时间4 h](a); 1.5-Bi2O2CO3/g-C3N4在相同条件下的延长反应时间转化率(b); 1.5-Bi2O2CO3/g-C3N4的稳定性测试[测试条件:30 mg催化剂,300 W氙灯(AM 1.5G),光照时间4 h](c); 1.5-Bi2O2CO3/g-C3N4在反应过程中的自由基捕获实验 (d)"

表1

选择性光催化苯甲醇氧化的相关文献"

序号催化剂反应条件选择性/%转化率/%文献
1TiO2@COFwhite light LED, 30 h99.992.5[12]
2Au-Pd/ZnIn2S4λ> 420 nm, 10 h>9990.6[45]
3NH2-MIL-125(Ti)white light LED, 40 h>9988[46]
4N-vacancy-g-C3N4AM 1.5, 9 h>9968.3[20]
5CdS@SnO2;λ> 420 nm, 8 h9878[47]
6Au-BiOCl-OVλ> 420 nm, 8 h>9975.6[19]
7Bi4O5Br2blue LED, 24 h>9999.1[48]
8Bi2O2CO3/g-C3N4AM 1.5, 9 h>99.9>99.9本工作

图7

g-C3N4、Bi2O2CO3及1.5-Bi2O2CO3/g-C3N4光催化剂的稳态荧光光谱(a)、时间分辨荧光光谱(b)、瞬态光电流谱图(c)和阻抗谱图(d)"

图8

光催化氧化苯甲醇反应机理"

1 Yang Z W, Xu X Q, Liang X X, et al. MIL-53(Fe)-graphene nanocomposites: efficient visible-light photocatalysts for the selective oxidation of alcohols[J]. Applied Catalysis B: Environmental, 2016, 198: 112-123.
2 Chen X L, Zhong X, Yuan B W, et al. Defect engineering of nickel hydroxide nanosheets by Ostwald ripening for enhanced selective electrocatalytic alcohol oxidation[J]. Green Chemistry, 2019, 21(3): 578-588.
3 She H D, Zhou H, Li L S, et al. Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11939-11948.
4 Sun L Q, Li B, Chu X Y, et al. Synthesis of Si-O-bridged g-C3N4/WO3 2D-heterojunctional nanocomposites as efficient photocatalysts for aerobic alcohol oxidation and mechanism insight[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9916-9927.
5 马淳安, 廖艳梅, 朱英红, 等. Ni-Cu合金电极上苯甲醇的选择性电氧化[J]. 化工学报, 2011, 62(1): 142-146.
Ma C A, Liao Y M, Zhu Y H, et al. Selective electro-oxidation of benzyl alcohol on Ni-Cu alloy electrodes[J]. CIESC Journal, 2011, 62(1): 142-146.
6 McClelland K P, Weiss E A. Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde or C—C coupled products by visible-light-absorbing quantum dots[J]. ACS Applied Energy Materials, 2019, 2(1): 92-96.
7 Hao H C, Zhang L, Wang W Z, et al. Photocatalytic hydrogen evolution coupled with efficient selective benzaldehyde production from benzyl alcohol aqueous solution over ZnS-NixSy composites[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10501-10508.
8 Zou J H, Wang Z T, Guo W, et al. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: the effect of surface OH groups[J]. Applied Catalysis B: Environmental, 2020, 260: 118185.
9 Jing K Q, Ma W, Ren Y H, et al. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol[J]. Applied Catalysis B: Environmental, 2019, 243: 10-18.
10 Li X R, Wang J G, Men Y, et al. TiO2 mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions[J]. Applied Catalysis B: Environmental, 2016, 187: 115-121.
11 Xu C, Yang F, Deng B J, et al. Ti3C2/TiO2 nanowires with excellent photocatalytic performance for selective oxidation of aromatic alcohols to aldehydes[J]. Journal of Catalysis, 2020, 383: 1-12.
12 Lu G L, Huang X B, Wu Z Y, et al. Construction of covalently integrated core-shell TiO2 nanobelts@COF hybrids for highly selective oxidation of alcohols under visible light[J]. Applied Surface Science, 2019, 493: 551-560.
13 Wang Z, Feng J J, Li X L, et al. Au-Pd nanoparticles immobilized on TiO2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol[J]. Journal of Colloid and Interface Science, 2021, 588: 787-794.
14 Lv Y, Xu Z L, Kobayashi H, et al. Novel Pd-loaded urchin-like (NH4)xWO3/WO3 as an efficient visible-light-driven photocatalyst for partial conversion of benzyl alcohol[J]. Journal of Alloys and Compounds, 2020, 845: 156225.
15 Ren Z Y, Zhang J Y, Xiao F X, et al. Revisiting the construction of graphene–CdS nanocomposites as efficient visible-light-driven photocatalysts for selective organic transformation[J]. J.Mater. Chem. A, 2014, 2(15): 5330-5339.
16 Samanta S, Khilari S, Pradhan D, et al. An efficient, visible light driven, selective oxidation of aromatic alcohols and amines with O2 using BiVO4/g-C3N4 nanocomposite: a systematic and comprehensive study toward the development of a photocatalytic process[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2562-2577.
17 Dai Y T, Ren P J, Li Y R, et al. Solid base Bi24O31Br10(OH)δ with active lattice oxygen for the efficient photo-oxidation of primary alcohols to aldehydes[J]. Angewandte Chemie, 2019, 131(19): 6331-6336.
18 Zhang R Q, Liu Y Y, Wang Z Y, et al. Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV-Vis light irradiation[J]. Applied Catalysis B: Environmental, 2019, 254: 463-470.
19 Li H, Qin F, Yang Z, et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies[J]. Journal of the American Chemical Society, 2017, 139(9): 3513-3521.
20 Ding J, Xu W, Wan H, et al. Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes[J]. Applied Catalysis B: Environmental, 2018, 221: 626-634.
21 张开莲, 杨凯, 李笑笑, 等. 一步水热合成In2S3/CdIn2S4异质结微球及其光催化性能[J]. 化工学报, 2020, 71(8): 3602-3613.
Zhang K L, Yang K, Li X X, et al. One-step hydrothermal synthesis of In2S3/CdIn2S4 heterojunction microsphere and its photocatalytic performance[J]. CIESC Journal, 2020, 71(8): 3602-3613.
22 孙丹阳, 翟婷婷, 黎汉生, 等. g-C3N4的改性策略以及g-C3N4/Ti3C2异质结研究进展[J]. 化工学报, 2020, 71: 1-11.
Sun D Y, Zhai T T, Li H S, et al. Research progress on modification strategy of g-C3N4 and g-C3N4/Ti3C2 heterojunction[J]. CIESC Journal, 2020, 71: 1-11.
23 Zhang K N, Zhang T N, Cheng G H, et al. Interlayer transition and infrared photodetection in atomically thin type-Ⅱ MoTe₂/MoS₂ van der Waals heterostructures[J]. ACS Nano, 2016, 10(3): 3852-3858.
24 Yang G, Chen D M, Ding H, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency[J]. Applied Catalysis B: Environmental, 2017, 219: 611-618.
25 Liao G F, Gong Y, Zhang L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science, 2019, 12(7): 2080-2147.
26 Chen D M, Wang K W, Xiang D G, et al. Significantly enhancement of photocatalytic performances via core-shell structure of ZnO@mpg-C3N4[J]. Applied Catalysis B: Environmental, 2014, 147: 554-561.
27 Chen D M, Wang K W, Hong W Z, et al. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite[J]. Applied Catalysis B: Environmental, 2015, 166/167: 366-373.
28 Zhang W Y, Bariotaki A, Smonou I, et al. Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride[J]. Green Chemistry, 2017, 19(9): 2096-2100.
29 Xing C S, Wu Z D, Jiang D L, et al. Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2014, 433: 9-15.
30 何志桥, 陈锦萍, 童丽丽, 等. BiOCl/g-C3N4异质结催化剂可见光催化还原CO2[J]. 化工学报, 2016, 67(11): 4634-4642.
He Z Q, Chen J P, Tong L L, et al. BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light[J]. CIESC Journal, 2016, 67(11): 4634-4642.
31 Chen L, Hua H, Yang Q, et al. Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets[J]. Applied Surface Science, 2015, 327: 62-67.
32 Kim K, Nam S K, Park J H, et al. Growth of BiVO4 nanoparticles on a WO3 porous scaffold: improved water-splitting by high band-edge light harvesting[J]. Journal of Materials Chemistry A, 2019, 7(9): 4480-4485.
33 Wang G Z, Luo X K, Huang Y H, et al. BiOX/BiOY (X, Y = F, Cl, Br, I) superlattices for visible light photocatalysis applications[J]. RSC Advances, 2016, 6(94): 91508-91516.
34 Zhang G Y, Wang J J, Shen X Q, et al. Br-doped Bi2O2CO3 nanosheets with improved electronic structure and accelerated charge migration for outstanding photocatalytic behavior[J]. Applied Surface Science, 2019, 470: 63-73.
35 Zhao H P, Li G F, Tian F, et al. g-C3N4 surface-decorated Bi2O2CO3 for improved photocatalytic performance: theoretical calculation and photodegradation of antibiotics in actual water matrix[J]. Chemical Engineering Journal, 2019, 366: 468-479.
36 Lan Y L, Li Z S, Xie W, et al. In situ fabrication of I-doped Bi2O2CO3/g-C3N4 heterojunctions for enhanced photodegradation activity under visible light[J]. Journal of Hazardous Materials, 2020, 385: 121622.
37 Ma Y J, Bian Y, Tan P F, et al. Simple and facile ultrasound-assisted fabrication of Bi2O2CO3/g-C3N4 composites with excellent photoactivity[J]. Journal of Colloid and Interface Science, 2017, 497: 144-154.
38 陈克龙, 黄建花. g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢[J]. 化工学报, 2020, 71(1): 397-408.
Chen K L, Huang J H. G-C3N4-CdS-NiS2 composite nanotube: synthesis and its photocatalytic activity for H2 generation under visible light[J]. CIESC Journal, 2020, 71(1): 397-408.
39 Zhang R Y, Ran T, Cao Y H, et al. Oxygen activation of noble-metal-free g-C3N4/α-Ni(OH)2 to control the toxic byproduct of photocatalytic nitric oxide removal[J]. Chemical Engineering Journal, 2020, 382: 123029.
40 Yang B, Lv K, Li Q, et al. Photosensitization of Bi2O2CO3 nanoplates with amorphous Bi2S3 to improve the visible photoreactivity towards NO oxidation[J]. Applied Surface Science, 2019, 495: 143561.
41 Hao Q, Xie C A, Huang Y M, et al. Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles[J]. Chinese Journal of Catalysis, 2020, 41(2): 249-258.
42 Liu S, Zhao M Y, He Z T, et al. Preparation of a p-n heterojunction 2D BiOI nanosheet/1DBiPO4 nanorod composite electrode for enhanced visible light photoelectrocatalysis[J]. Chinese Journal of Catalysis, 2019, 40(3): 446-457.
43 Jin J, Yu J G, Guo D P, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity[J]. Small, 2015, 11(39): 5262-5271.
44 Heidari S, Haghighi M, Shabani M. Sono-photodeposition of Ag over sono-fabricated mesoporous Bi2Sn2O7-two dimensional carbon nitride: type-Ⅱ plasmonic nano-heterojunction with simulated sunlight-driven elimination of drug[J]. Chemical Engineering Journal, 2020, 389: 123418.
45 Feng C J, Yang X L, Sun Z L, et al. Dual interfacial synergism in Au-Pd/ZnIn2S4 for promoting photocatalytic selective oxidation of aromatic alcohol[J]. Applied Surface Science, 2020, 501: 144018.
46 Wu Z Y, Huang X B, Zheng H Y, et al. Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light[J]. Applied Catalysis B: Environmental, 2018, 224: 479-487.
47 Liu Y, Zhang P, Tian B Z, et al. Core-shell structural CdS@SnO2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 13849-13858.
48 Zheng C X, He G P, Xiao X, et al. Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation[J]. Applied Catalysis B: Environmental, 2017, 205: 201-210.
[1] 褚有群, 葛展榜, 焦玉峰, 张建平, 郭冠璇, 朱英红. 有机-水混合溶剂中氯离子对C—H键的电氧化腈化性能[J]. 化工学报, 2022, 73(7): 3018-3025.
[2] 张昕哲, 孙文涛, 吕波, 李春. 植物天然产物氧化与微生物制造[J]. 化工学报, 2022, 73(7): 2790-2805.
[3] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[4] 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006.
[5] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[6] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[7] 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894.
[8] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[9] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[10] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[11] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[12] 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157.
[13] 张家仁, 刘海超. 大豆油与甲醇酯交换反应体系的相平衡研究[J]. 化工学报, 2022, 73(5): 1920-1929.
[14] 殷亚然, 朱星星, 张先明, 朱春英, 付涛涛, 马友光. 微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性[J]. 化工学报, 2022, 73(5): 1930-1939.
[15] 刘庆祎, 肖桐, 孙文杰, 张家豪, 刘昌会. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!