[1] |
NAZIA R, SAADIA R T, MATEEN A. Effect of Fe2+amendment on photo degradation kinetics of imidacloprid in moist soil[J]. Environmental Earth Science, 2014, 71(6):2869-2874.
|
[2] |
SU M H, ZAW W M, CHULKYOON M. Aqueous degradation of imidacloprid and fenothiocarb using contact glow discharge electrolysis:degradation behavior and kinetics[J]. Food Science and Biotechnology, 2013, 22(6):1773-1778.
|
[3] |
XIANG F H, ABEBE J W, QING Y D, et al. Biodegradation of neonicotinoid insecticide, imidacloprid by restriction enzyme mediated integration (REMI) generated trichoderma mutants[J]. Chemosphere, 2014, 112:526-530.
|
[4] |
MERAL T, NIHALl O, BELGIN G. Efficient removal of insecticide imidacloprid from water by electrochemical advanced oxidation processes[J]. Environmental Science Pollution Research, 2014, 21:8387-8397.
|
[5] |
KITSIOU V, FILIPPIDIS N, MANTZAVIONS D, et al. Heterogeneous and homogeneous photocatalytic degradation of the insecticide imidacloprid in aqueous solutions[J]. Applied Catalysis B:Environmental, 2009, 86:27-35.
|
[6] |
黄臻, 刘远霞, 包华影. 60Co γ射线辐照降解吡虫啉稀水溶液[J]. 辐射研究与辐射工艺学报, 2013, 31(5):1-8.HUANG Z, LIU Y X, BAO H Y. 60Co γ irradiation degradation of imidacloprid aqueous solution[J]. Journal of Radiation Research and Processing, 2013, 31(5):1-8.
|
[7] |
PANKAJ N, SAYLI D B, PARAG R. Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2014, 21(5):1770-1777.
|
[8] |
INDERPREET S G, SATNAM S, BONAMALI P. Photodegradation of imidacloprid insecticide by Ag-deposited titanate nanotubes:a study of intermediates and their reaction pathways[J]. Journal of Agricultural and Food Chemistry, 2014, 62(52):12497-12503.
|
[9] |
ROMILA A, BALWINDER S. Metabolic degradation of imidacloprid in paddy field soil[J]. Environmental Monitoring and Assessment, 2014, 186(10):5977-5984.
|
[10] |
TEENA S, ANITA R, AMRIT P T. Degradation of imidacloprid in liquid by strain ATA1 using Co-metabolism[J]. Bioremediation Journal, 2014, 18:227-235.
|
[11] |
YANG B, DENG S. Bimentallic Pd/Al particles for highly efficiency drodechlorination of 2-chlorobiphenyl in acidic aqueous solution[J]. Journal of Hazardous Materials, 2011, 189:76-83.
|
[12] |
YANG M, YU H Q, ZHENG J C. Reductive degradation of nitrobenzene in aqueous solution by zero-iron[J]. Chemosphere, 2004, 54:789-794.
|
[13] |
DORATHI P J, KANDASAMY P. Dechlorination of chlorophenols by zero valent iron impregnated silica[J]. Journal of Environmental Sciences, 2012, 24(4):765-773.
|
[14] |
SU C, PULS R W, KRUG T A. A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles[J]. Water Research, 2012, 46(16):5071-5084.
|
[15] |
KUSTOV L M, FINASHINA E D, SHUVALOVA E V, et al. Pd-Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination[J]. Environment International, 2011, 37(6):1044-1052.
|
[16] |
CHOI K, LEE W. Enhanced degradation of intrichloroethylene nano-scale zero-valent iron Fenton system with Cu(Ⅱ)[J]. Journal of Hazardous Materials, 2012, 211(15):146-153.
|
[17] |
YIN W Z, WU J, LI P. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater:the effects of pH, iron dosage, oxygen and common dissolve danions[J]. Chemical Engineering Journal, 2012, 184:198-204.
|
[18] |
NEUMANN A, KAEGI R, VOEGELIN A. Arsenic removal with composite iron matrix filters in bangladesh:a field and laboratory study[J]. Environmental Science & Technology, 2013, 47(9):4544-4554.
|
[19] |
LUO S, QIN P F, SHAO J H. Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for orange Ⅱ removal[J]. Chemical Engineering Journal, 2013, 223:1-7.
|
[20] |
SEGURA Y, MARTINEZ F, MELERO J. Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol[J]. Applied Catalysis B:Environmental, 2012, 113:100-106.
|
[21] |
袁超, 李磊, 孙应龙. 零价铝还原处理偶氮染料活性蓝222废水[J]. 环境科学研究, 2016, 29(7):1067-1074.YUAN C, LI L, SUN Y L. The treatment of reactive blue 222 wastewater by zero valence aluminum reduction[J]. Environmental Science Research, 2016, 29(7):1067-1074.
|
[22] |
王国贤. 零价铁还原硝基苯的反应机理及影响因素[J]. 水资源保护, 2007, 23(4):85-87.WANG G X. Reaction mechanism and influencing factors of nitrobenzene by zero valence iron reduction[J]. Water Resources Protection, 2007, 23(4):85-87.
|
[23] |
BOKARE A D, CHOI W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants[J]. Environmental Science Technology, 2009, 43(18):7130-7135.
|
[24] |
WANG J K, FARRELL J. Investigation the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectropy[J]. Environmental Science and Technology, 2003, 37(17):3891-3896.
|
[25] |
杨世迎, 石超, 徐婷, 等. pH对无氧条件下零价铝直接还原酸性橙7的影响[J]. 环境化学, 2015, 34(10):1785-1790.YANG S Y, SHI C, XU T, et al. The effect of pH direct reduction of acid orange 7 under anaerobic conditions[J]. Environmental Chemistry, 2015, 34(10):1785-1790.
|
[26] |
郑巍, 宣日成, 刘维屏. 新农药吡虫啉水解动力学和机理研究[J]. 环境科学学报, 1999, 21:54-62.ZHENG W, XUAN R C, LIU W P. Pesticide imidacloprid hydrolysis kinetics and mechanism[J]. Journal of Environmental Sciences, 1999, 21:54-62.
|
[27] |
SMRITI S, BALWINDER S. Assessment of imidacloprid degradation by soil-isolated bacillus alkalinitrilicus[J]. Environmental Monitoring Assessment, 2014, 186(11):7183-7193.
|
[28] |
OLALLA I, JOSE G, MARTA P M. Electro-Fenton oxidation of imidacloprid by Fe alginategel beads[J]. Applied Catalysis B:Environmental, 2014, 144:416-424.
|
[29] |
NAUEN R, TIETJEN K, WAGNER K, et al. Efficacy of plant metabolites of imidacloprid against Myzus persicae and Aphis gossypii(Homoptera:Aphididae)[J]. Pesticide Science, 1998, 52(1):53-57.
|
[30] |
MALATO S, CACCERES J. Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant:a comparative study[J]. Environmental Science Technology, 2001, 35(21):4359-4366.
|