化工学报 ›› 2018, Vol. 69 ›› Issue (1): 259-271.DOI: 10.11949/j.issn.0438-1157.20170964
朱晨杰, 付静雯, 谭卓涛, 应汉杰
收稿日期:
2017-07-25
修回日期:
2017-09-11
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
应汉杰
基金资助:
国家自然科学基金项目(21776132,21406110,21390204);江苏省自然科学基金项目(BK20140938);“青年人才托举工程”项目。
ZHU Chenjie, FU Jingwen, TAN Zhuotao, YING Hanjie
Received:
2017-07-25
Revised:
2017-09-11
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170964
Supported by:
supported by the National Natural Science Foundation of China (21776132, 21406110, 21390204), Jiangsu Province Natural Science Foundation for Youths (BK20140938) and Young Elite Scientist Sponsorship Program by CAST.
摘要:
氧化还原酶可以催化具有特定区域选择性、化学选择性、立体选择性的反应,反应条件温和且催化效率高,因此在有机化学和制药领域发挥着日益重要的作用。绝大多数氧化还原酶依赖烟酰胺腺嘌呤二核苷酸NAD(H)和烟酰胺腺嘌呤二核苷酸磷酸NADP(H)为酶促反应提供氧化还原当量。NAD(H)/NADP(H)由于价格昂贵、稳定性差导致无法化学计量投入。经过几十年研究,形成了4种经典的NAD(H)/NADP(H)再生方法:酶法、化学法、电化学法和光化学法,与此同时,一系列稳定性好、活性高且廉价的人工烟酰胺辅因子mNAD(H) s尤其是1,4-二氢吡啶类烟酰胺辅因子的开发和利用为NAD(H)/NADP(H)工业化运用提供了新的思路。
中图分类号:
朱晨杰, 付静雯, 谭卓涛, 应汉杰. 天然烟酰胺辅因子再生体系及其人工类似物研究进展[J]. 化工学报, 2018, 69(1): 259-271.
ZHU Chenjie, FU Jingwen, TAN Zhuotao, YING Hanjie. Advances in regeneration system of natural nicotinamide cofactor and its artificial analogues[J]. CIESC Journal, 2018, 69(1): 259-271.
[1] | KARA S, SCHRITTWIESER J H, HOLLMANN F, et al. Recent trends and novel concepts in cofactor-dependent biotransformations[J]. Applied Microbiology and Biotechnology, 2014, 98(4):1517-1529. |
[2] | WU H, TIAN C, SONG X, et al. Methods for the regeneration of nicotinamide coenzymes[J]. Green Chemistry, 2013, 15(7):1773. |
[3] | 蔡谨, 杨晟, 许建和, 等. 辅因子再生研究进展[J]. 生物加工过程, 2005, 3(2):1-8. CAI J, YANG S, XU J H, et al. Progresses on cofactor regeneration[J]. Chinese Journal of Bioprocess Engineering, 2005, 3(2):1-8. |
[4] | 吕陈秋, 姜忠义, 王姣. 烟酰型辅酶NAD(P)+和NAD(P)H再生的研究进展[J]. 有机化学, 2004, 24(11):1366-1379. LÜ C Q, JIANG Z Y, WANG J. Progress in regeneration of NAD(P)+ and NAD(P)H[J]. Chinese Journal of Organic Chemistry, 2004, 24(11):1366-1379. |
[5] | 江金鹏, 吴旭日, 陈依军. 解决氧化还原酶反应体系中辅酶问题的策略及其应用[D]. 生物工程学报, 2012, 28(4):410-419. JIANG J P, WU X R, CHEN Y J. Strategy to solve cofactor issues in oxidoreductase catalyzed biocatalytic applications[J]. Chinese Journal of Biotechnology, 2012, 28(4):410-419. |
[6] | WICHMANN R, VASIC-RACKI D. Cofactor regeneration at the lab scale[J]. Advances in Biochemical Engineering, 2005, 92:225-260. |
[7] | HUMMEL W, KULA M R. Dehydrogenases for the synthesis of chiral compounds[J]. The FEBS Journal, 1989, 184(1):1-13. |
[8] | MATSUDA T, YAMAGISHI Y, KOGUCHI S. An effective method to use ionic liquids as reaction media for asymmetric reduction by Geotrichum candidum[J]. Tetrahedron Letters, 2006, 47(27):4619-4622. |
[9] | WECKBECKER A. Regeneration of nicotinamide coenzymes:principles and applications for the synthesis of chiral compounds[M]//ANDREA H G, WERNER HUMMEL. Biosystems Engineering Ⅰ. Heidelberg, Berlin:Springer-Verlag 2010:195-242. |
[10] | HOLLMANN F, ARENDS I W C E, HOLTMANN D. Enzymatic reductions for the chemist[J]. Green Chemistry, 2011, 13(9):2285. |
[11] | MERTENS R, GREINER L, VAN DEN BAN E C D, et al. Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration[J]. Journal of Molecular Catalysis B:Enzymatic, 2003, 24:39-52. |
[12] | YAMAMOTO H, MITSUHASHI K, KIMOTO N. A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(3):638-649. |
[13] | COSGROVE M S, NAYLOR C, PALUDAN S. On the mechanism of the reaction catalyzed by glucose 6-phosphate dehydrogenase[J]. Biochemistry, 1998, 37(9):2759-2767. |
[14] | SMITH L D, BUDGEN N, BUNGARD S J. Purification and characterization of glucose dehydrogenase from the Thermoplasma acidophilum[J]. Biochemical Journal, 1989, 261(3):973-977. |
[15] | ADOLPH H W, MAURER P, SCHNEIDER-BERNLÖHR H. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase[J]. The FEBS Journal, 1991, 201(3):615-625. |
[16] | VAN IERSEL M F, EPPINK M H, VAN BERKEL W J. Purification and characterization of a novel NADP-dependent branched-chain alcohol dehydrogenase from Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 1997, 63(10):4079-4082. |
[17] | PEITZNER J, LINKE H A B, SCHLEGEL H G. Eigenschaften der NAD-spezifischen hydrogenase aus hydrogenomonas H 16[J]. Archiv für Mikrobiologie, 1970, 71(1):67-78. |
[18] | WOODYER R, VAN DER DONK W A, ZHAO H. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design[J]. Biochemistry, 2003, 42(40):11604-11614. |
[19] | HUMMEL W, RIEBEL B. Isolation and biochemical characterization of a new NADH oxidase from Lactobacillus brevis[J]. Biotechnology Letters, 2003, 25(1):51-54. |
[20] | RIEBEL B R, GIBBS P R, WELLBORN W B. Cofactor regeneration of NAD+ from NADH:novel water-forming NADH oxidases[J]. Advanced Synthesis & Catalysis, 2002, 344(10):1156-1168. |
[21] | ANGELASTRO A, DAWSON W M, LUK L Y P, et al. A versatile disulfide-driven recycling system for NADP+ with high cofactor turnover number[J]. ACS Catalysis, 2017, 7(2):1025-1029. |
[22] | LEE L G, WHITESIDES G M. Preparation of optically active 1,2-diols and α-hydroxy ketones using glycerol dehydrogenase as catalyst:limits to enzyme-catalyzed synthesis due to noncompetitive and mixed inhibition by product.[J]. The Journal of Organic Chemistry, 1986, 51(25):25-36. |
[23] | CARREA G, BOVARA R, CREMONESI P. Enzymatic preparation of 12-ketochenodeoxycholic acid with NADP regeneration[J]. Biotechnology and Bioengineering, 1984, 26(5):560-563. |
[24] | PETERSON P E, PIERCE J, SMITH T J. Crystallization and characterization of bovine liver glutamate dehydrogenase[J]. Journal of Structural Biology, 1997, 120(1):73-77. |
[25] | GARVIE E I. Bacterial lactate dehydrogenases[J]. Microbiological Reviews, 1980, 44(1):106-139. |
[26] | PARK H J, KREUTZER R, REISER C O A. Molecular cloning and nucleotide sequence of the gene encoding a H2O2-forming NADH oxidase from the extreme thermophilic Thermus thermophilus HB8 and its expression in Escherichia coli[J]. The FEBS Journal, 1992, 205(3):875-879. |
[27] | GOLDBERG K, SCHROER K, LUETZ S, et al. Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols(Ⅰ):Processes with isolated enzymes[J]. Applied Microbiology and Biotechnology, 2007, 76(2):237-248. |
[28] | HOLLMANN F, WITHOLT B, SCHMID A.[Cp*Rh(bpy)(H2O)]2+:a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes[J]. Journal of Molecular Catalysis B:Enzymatic, 2002, 19:167-176. |
[29] | HOLLMANN F, HOFSTETTER K, SCHMID A. Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis[J]. Trends in Biotechnology, 2006, 24(4):163-171. |
[30] | SOLDEVILA-BARREDA J J, BRUIJNINCX P C A, HABTEMARIAM A, et al. Improved catalytic activity of ruthenium-arene complexes in the reduction of NAD+[J]. Organometallics, 2012, 31(16):5958-5967. |
[31] | MAENAKA Y, SUENOBU T, FUKUZUMI S. Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a[C,N] and a[C,C] cyclometalated organoiridium complex at room temperature in water[J]. Journal of the American Chemical Society, 2012, 134(22):9417-9427. |
[32] | MAENAKA Y, SUENOBU T, FUKUZUMI S. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature[J]. Journal of the American Chemical Society, 2011, 134(1):367-374. |
[33] | RUPPERT R, HERRMANN S, STECKHAN E. Very efficient reduction of NAD(P)+ with formate catalysed by cationic rhodium complexes[J]. Chemical Communications, 1988, (17):1150-1151. |
[34] | CANIVET J, SÜSS-FINK G, ŠTěPNI?KA P. Water-soluble phenanthroline complexes of rhodium, iridium and ruthenium for the regeneration of NADH in the enzymatic reduction of ketones[J]. European Journal of Inorganic Chemistry, 2007, 2007(30):4736-4742. |
[35] | HAQUETTE P, TALBI B, BARILLEAU L, et al. Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration[J]. Organic & Biomolecular Chemistry, 2011, 9(16):5720-5727. |
[36] | HILT G, LEWALL B, MONTERO G. Efficient in-situ redox catalytic NAD(P)+ regeneration in enzymatic synthesis using transition-metal complexes of 1,10-phenanthroline-5,6-dione and its N-monomethylated derivative as catalysts[J]. European Journal of Organic Chemistry, 1997, 1997(11):2289-2296. |
[37] | JEE J E, EIGLER S, JUX N. Influence of an extremely negatively charged porphyrin on the reversible binding kinetics of NO to Fe(Ⅲ) and the subsequent reductive nitrosylation[J]. Inorganic Chemistry, 2007, 46(8):3336-3352. |
[38] | MAID H, BOHM P, HUBER S M, et al. Iron catalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen:a synthetic metalloporphyrin as a biomimetic NAD(P)H oxidase[J]. Angewandte Chemie, International Edition, 2011, 50(10):2397-2400. |
[39] | JONES J B, TAYLOR K E. Use of pyridinium and flavin derivatives for recycling of catalystic amounts of NAD+ during preparative-scale horse liver alchohol dehydrogenase-catalysed oxidations of alcohols[J]. Journal of the Chemical Society, Chemical Communications, 1973, (6):205-206. |
[40] | GARGIULO S, ARENDS I W C E, HOLLMANN F. A photoenzymatic system for alcohol oxidation[J]. ChemCatChem, 2011, 3(2):338-342. |
[41] | ZHU C J, LI Q, PU L L, et al. Nonenzymatic and metal-free organocatalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen[J]. ACS Catalysis, 2016, 6(8):4989-4994. |
[42] | DAMIAN A, OMANOVIC S. Electrochemical reduction of NAD+ on a polycrystalline gold electrode[J]. Journal of Molecular Catalysis A:Chemical, 2006, 253(1):222-233. |
[43] | RAMíREZ-MOLINA C, BOUJTITA M. New strategy for dehydrogenase amperometric biosensors using surfactant to enhance the sensitivity of diaphorase/ferrocene modified carbon paste electrodes for electrocatalytic oxidation of NADH[J]. Electroanalysis, 2003, 15(13):1095-1100. |
[44] | ZHENG H, OHNO Y, NAKAMORI T. Production of L-malic acid with fixation of HCO3- by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method[J]. Journal of Bioscience and Bioengineering, 2009, 107(1):16-20. |
[45] | YUAN R, WATANABE S, KUWABATA S. Asymmetric electroreduction of ketone and aldehyde derivatives to the corresponding alcohols using alcohol dehydrogenase as an electrocatalyst[J]. The Journal of Organic Chemistry, 1997, 62(8):2494-2499. |
[46] | SCHULZ M, LEICHMANN H, GÜNTHER H. Electromicrobial regeneration of pyridine nucleotides and other preparative redox transformations with Clostridium thermoaceticum[J]. Applied microbiology and biotechnology, 1995, 42(6):916-922. |
[47] | SALIMI A, IZADI M, HALLAJ R. Electrocatalytic reduction of NAD+ at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(Ⅲ) complexes[J]. Journal of Solid State Electrochemistry, 2009, 13(3):485-496. |
[48] | CHEIKHOU K, TZÉDAKIS T. Electrochemical microreactor for chiral syntheses using the cofactor NADH[J]. AIChE Journal, 2008, 54(5):1365-1376. |
[49] | KANG H S, NA B K, PARK D H. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH[J]. Biotechnology Letters, 2007, 29(8):1277-1280. |
[50] | HILDEBRAND F, KOHLMANN C, FRANZ A. Synthesis, characterization and application of new rhodium complexes for indirect electrochemical cofactor regeneration[J]. Advanced Synthesis & Catalysis, 2008, 350(6):909-918. |
[51] | ZHANG L, VILÀ N, KOHRING G W, et al. Covalent immobilization of (2,2'-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complex on a porous carbon electrode for efficient electrocatalytic NADH regeneration[J]. ACS Catalysis, 2017, 7(7):4386-4394. |
[52] | CANTET J, BERGEL A, COMTAT M. Coupling of the electroenzymatic reduction of NAD+ with a synthesis reaction[J]. Enzyme and Microbial Technology, 1996, 18(1):72-79. |
[53] | LI Z, VAN BEILEN J B, DUETZ W A, et al. Oxidative biotransformations using oxygenases[J]. Current Opinion in Chemical Biology, 2002, 6(2):136-144. |
[54] | RAHMAN G, LIM J Y, JUNG K D, et al. Electrodeposited Ru nanoparticles for electrochemical reduction of NAD+ to NADH[J]. International Journal of Electrochemical Science, 2011, 6(7):2789-2797. |
[55] | HILT G, JARBAWI T, HEINEMAN W R. An analytical study of the redox behavior of 1,10-phenanthroline-5,6-dione, its transition-metal complexes, and its N-monomethylated derivative with regard to their efficiency as mediators of NAD(P)+ regeneration[J]. Chemistry-A European Journal, 1997, 3(1):79-88. |
[56] | WILLNER I, YAN Y M, WILLNER B, et al. Integrated enzyme-based biofuel cells-a review[J]. Fuel Cells, 2009, 9(1):7-24. |
[57] | SCHRÖDER I, STECKHAN E, LIESE A. In situ NAD+ regeneration using 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator[J]. Journal of Electroanalytical Chemistry, 2003, 541:109-115. |
[58] | KIM Y, IKEBUKURO K, MUGURUMA H, et al. Photogeneration of NADPH by oligothiophenes coupled with ferredoxin-NADP reductase[J]. Journal of Biotechnology, 1998, 59(3):213-220. |
[59] | BRUNE A, JEONG G, LIDDELL P A, et al. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell[J]. Langmuir, 2004, 20(19):8366-8371. |
[60] | KIM J H, LEE S H, LEE J S, et al. Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis[J]. Chemical Communications, 2011, 47(37):10227-10229. |
[61] | RICKUS J L, CHANG P L, TOBIN A J, et al. Photochemical coenzyme regeneration in an enzymatically active optical material[J]. The Journal of Physical Chemistry B, 2004, 108(26):9325-9332. |
[62] | DILGIN Y, GORTON L, NISLI G. Photoelectrocatalytic oxidation of NADH with electropolymerized toluidine blue O[J]. Electroanalysis, 2007, 19(2/3):286-293. |
[63] | PARK C B, LEE S H, SUBRAMANIAN E, et al. Solar energy in production of L-glutamate through visible light active photocatalyst-redox enzyme coupled bioreactor[J]. Chemical Communications, 2008, (42):5423-5425. |
[64] | CHEN D, YANG D, WANG Q, et al. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles[J]. Industrial & Engineering Chemistry Research, 2006, 45(12):4110-4116. |
[65] | RYU J, LEE S H, NAM D H, et al. Rational design and engineering of quantum-dot-sensitized TiO2 nanotube arrays for artificial photosynthesis[J]. Advanced Materials, 2011, 23(16):1883-1888. |
[66] | JIANG Z, LÜ C, WU H. Photoregeneration of NADH using carbon-containing TiO2[J]. Industrial & Engineering Chemistry Research, 2005, 44(12):4165-4170. |
[67] | SHI Q, YANG D, JIANG Z, et al. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles[J]. Journal of Molecular Catalysis B:Enzymatic, 2006, 43(1):44-48. |
[68] | KIM J H, LEE M, LEE J S, et al. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis[J]. Angewandte Chemie International Edition, 2012, 51(2):517-520. |
[69] | KARRER P, OTTO W. Jodmethylat des nicotinsäureamids[J]. Biochem Ztschr, 1936, 285(May 12):297-298. |
[70] | KARRER P, STARE F. N-Alkyl-o-dihydro-nicotinsäure-amide[J]. Helvetica Chimica Acta, 1937, 20(1):418-423. |
[71] | MAUZERALL D, WESTHEIMER F H. 1-Benzyldihydro-nicotinamide-a model for reduced DPN[J]. Journal of the American Chemical Society, 1955, 77(8):2261-2264. |
[72] | WALTER P, KAPLAN N. Substituted nicotinamide analogues of nicotinamide adenine dinucleotide[J]. Journal of Biological Chemistry, 1963, 238(8):2823-2830. |
[73] | KAPLAN N O, CIOTTI M M, STOLZENBACH F E. Reaction of pyridine nucleotide analogues with dehydrogenases[J]. Journal of Biological Chemistry, 1956, 221(2):833-844. |
[74] | KAPLAN N O, CIOTTI M M. Chemistry and properties of the 3-acetylpyridine analogue of diphosphopyridine nucleotide[J]. Journal of Biological Chemistry, 1956, 221(2):823-832. |
[75] | KAPLAN N O, STOLZENBACH F E. Preparation of DPN derivatives and analogs[J]. Methods in Enzymology, 1957, 3:899-905. |
[76] | FAWCETT C P, KAPLAN N O. Preparation and properties of some nicotinamide adenine dinucleotide analogues with pentose and purine modifications[J]. The Journal of Biological Chemistry, 1962, 237:1709-1715. |
[77] | PAUL C E, ARENDS I W C E, HOLLMANN F. Is simpler better? Synthetic nicotinamide cofactor analogues for redox chemistry[J]. ACS Catalysis, 2014, 4(3):788-797. |
[78] | DU W, YU Z. Biomimetic in situ regeneration of cofactors NAD(P)+ and NAD(P)H models hantzsch esters and dihydrophenanthridine[J]. Synlett, 2012, 23:1300-1304. |
[79] | JONES J B, TAYLOR K E. Nicotinamide coenzyme regeneration. Flavin mononucleotide (riboflavin phosphate) as an efficient, economical, and enzyme-compatible recycling agent[J]. Canadian Journal of Chemistry, 1976, 54(19):2969-2973. |
[80] | JONES J B, TAYLOR K E. Nicotinamide coenzyme regeneration. The rates of some 1,4-dihydropyridine, pyridinium salt, and flavin mononucleotide hydrogen-transfer reactions[J]. Canadian Journal of Chemistry, 1976, 54(19):2974-2980. |
[81] | ANDERSON B M, CIOTTI C J, KAPLAN N O. Chemical properties of 3-substituted pyridine analogues of diphosphopyridine nucleotide[J]. The Journal of Biological Chemistry, 1959, 234(5):1219-1225. |
[82] | KAZLAUSKAS R J. Changing coenzymes improves oxidations catalyzed by alcohol dehydrogenase[J]. Journal of Organic Chemistry, 1988, 53(19):4633-4635. |
[83] | FRIEDLOS F, JARMAN M, DAVIES L C, et al. Identification of novel reduced pyridinium derivatives as synthetic co-factors for the enzyme DT diaphorase (NAD(P)H dehydrogenase (quinone), EC 1.6.99.2)[J]. Biochemical Pharmacology, 1992, 44(1):25-31. |
[84] | LUTZ J, HOLLMANN F, HO T V, et al. Bioorganometallic chemistry:biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and[Cp*Rh(bpy)H]+ for selective organic synthesis[J]. Journal of Organometallic Chemistry, 2004, 689(25):4783-4790. |
[85] | RYAN J D, FISH R H, CLARK D S. Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors[J]. ChemBioChem, 2008, 9(16):2579-2582. |
[86] | QI J, PAUL C E, HOLLMANN F, et al. Changing the electron donor improves azoreductase dye degrading activity at neutral pH[J]. Enzyme and Microbial Technology, 2017, 100:17-19. |
[87] | PAUL C E, GARGIULO S, OPPERMAN D J, et al. Mimicking nature:synthetic nicotinamide cofactors for C C bioreduction using enoate reductases[J]. Organic Letters, 2012, 15(1):180-183. |
[88] | ZHANG L, YUAN J, XU Y, et al. New artificial fluoro-cofactor of hydride transfer with novel fluorescence assay for redox biocatalysis[J]. Chemical Communications, 2016, 52(38):6471-6474. |
[89] | LÖW S A, LÖW I M, WEISSENBORN M J, et al. Enhanced ene-reductase activity through alteration of artificial nicotinamide cofactor substituents[J]. ChemCatChem, 2016, 8(5):911-915. |
[90] | STOCKWELL B R. Exploring biology with small organic molecules[J]. Nature, 2004, 432(7019):846-854. |
[91] | 侯淑华, 曲忠国, 钟克利, 等. 烟酰胺腺嘌呤二核苷酸(NAD+)类似物的合成及与NAD+依赖型酶相互作用进展[J]. 有机化学, 2015, 36(2):297-305. HOU S H, QU Z G, ZHONG K L, et al. Recent advances in nicotinamide adenine dinucluotide (NAD+) analogs synthesis and their interactions with NAD+-dependent enzymes[J]. Chinese Journal of Organic Chemistry, 2016, 36(2):297-305. |
[92] | 侯淑华, 刘武军, 赵宗保. 新型烟酰胺腺嘌呤二核苷酸(NAD)类似物的合成及其辅酶活性[J]. 有机化学, 2012, 32(2):349-353. HOU S H, LIU W J, ZHAO Z B. Synthesis of novel nicotinamide adenine dinucleotide (NAD) analogs and their coenzyme activities[J]. Chinese Journal of Organic Chemistry, 2012, 32(2):349-353. |
[93] | LIU W, WU S, HOU S, et al. Synthesis of phosphodiester-type nicotinamide adenine dinucleotide analogs[J]. Tetrahedron, 2009, 65(40):8378-8383. |
[94] | JI D, WANG L, HOU S, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide[J]. Journal of the American Chemical Society, 2011, 133(51):20857-20862. |
[95] | JI D, WANG L, LIU W, et al. Synthesis of NAD analogs to develop bioorthogonal redox system[J]. Science China Chemistry, 2012, 56(3):296-300. |
[96] | PAUL C E, HOLLMANN F. A survey of synthetic nicotinamide cofactors in enzymatic processes[J]. Applied Microbiology and Biotechnology, 2016, 100(11):4773-4778. |
[97] | LO H C, BURIEZ O, KERR J B, et al. Regioselective reduction of NAD+ models with[Cp*Rh(bpy)H]+ structure-activity relationships and mechanistic aspects in the formation of the 1,4-NADH derivatives[J]. Angewandte Chemie, International Edition, 1999, 38(10):1429-1432. |
[98] | NOWAK C, BEER B, PICK A, et al. A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors[J]. Frontiers in Microbiology, 2015, 6:957. |
[99] | CHEN Q A, CHEN M W, YU C B, et al. Biomimetic asymmetric hydrogenation:in situ regenerable Hantzsch esters for asymmetric hydrogenation of benzoxazinones[J]. Journal of the American Chemical Society, 2011, 133(41):16432-16435. |
[100] | CHEN Q A, GAO K, DUAN Y, et al. Dihydrophenanthridine:a new and easily regenerable NAD(P)H model for biomimetic asymmetric hydrogenation[J]. Journal of the American Chemical Society, 2012, 134(4):2442-2448. |
[101] | DUPAS G, LEVACHER V, BOURGUIGNON J. Chiral NADH models derived from optically active amino alcohols[J]. Heterocycles, 1994, 1(39):405-429. |
[102] | EL-SHERBENY M A, AL-SALEM H S, SULTAN M A, et al. Synthesis, in vitro and in vivo evaluation of a delivery system for targeting anticancer drugs to the brain[J]. Archiv der Pharmazie (Weinheim, Germany), 2003, 336(10):445-455. |
[103] | HAYNES R K, CHEU K W, CHAN H W, et al. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model-a unifying proposal for drug action[J]. ChemMedChem, 2012, 7(12):2204-2226. |
[104] | FRANCHETTI P, PETRELLI R, CAPPELLACCI L. Synthesis and biological evaluation of NAD analogs as human pyridine nucleotide adenylyltransferase inhibitors[J]. Nucleotides and Nucleic Acids, 2005, 24(5/6/7):477-479. |
[105] | KNOX R J, JENKINS T C, HOBBS S M. Bioactivation of 5-(aziridin-1-yl)-2,4-dinitro-benzamide (CB 1954) by human NAD(P)H quinone oxidoreductase(2):A novel co-substrate-mediated antitumor prodrug therapy[J]. Cancer Research, 2000, 60(15):4179-4186. |
[106] | WALLRODT S, BUNTZ A, WANG Y, et al. Bioorthogonally functionalized NAD+ analogues for in-cell visualization of poly(ADP-ribose) formation[J]. Angewandte Chemie, International Edition, 2016, 55(27):7660-7664. |
[107] | CLAUDIA N, ANDRE P, PETRA L, et al. Enzymatic reduction of nicotinamide biomimetic cofactors using an engineered glucose dehydrogenase:providing a regeneration system for artificial cofactors[J]. ACS Catalysis, 2017, 7(8):5202-5208. |
[108] | WANG L, JI D, LIU Y, et al. Synthetic cofactor-linked metabolic circuits for selective energy transfer[J]. ACS Catalysis, 2017, 7(3):1977-1983. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[3] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[4] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[5] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[6] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[7] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[8] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[9] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[10] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[11] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[12] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[13] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[14] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[15] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||