化工学报 ›› 2018, Vol. 69 ›› Issue (2): 546-554.DOI: 10.11949/j.issn.0438-1157.20171384
成少安, 黄志鹏, 于利亮, 毛政中, 黄浩斌, 孙怡
收稿日期:
2017-10-17
修回日期:
2017-11-11
出版日期:
2018-02-05
发布日期:
2018-02-05
通讯作者:
成少安
基金资助:
国家重点研发计划项目(2016YFB0600505);国家自然科学基金项目(51278448,51478414)。
CHENG Shao'an, HUANG Zhipeng, YU Liliang, MAO Zhengzhong, HUANG Haobing, SUN Yi
Received:
2017-10-17
Revised:
2017-11-11
Online:
2018-02-05
Published:
2018-02-05
Supported by:
supported by the National Key Research and Development Plan (2016YFB0600505) and the National Natural Science Foundation of China (51278448, 51478414).
摘要:
高盐废水通常采用生化、蒸发和膜处理3种方法处理,但无论采用何种方法,高盐废水处理均存在难度大和成本高等问题。微生物燃料电池(MFC)是一种基于产电微生物催化氧化有机物获得电能的装置,应用MFC处理废水可实现在处理废水的同时回收废水中能量,从而降低废水处理成本。近年来,应用MFC处理高盐废水来降低处理成本的研究逐渐开展并成为一个研究热点。本文综述了MFC处理高盐废水研究的最新进展,分析了盐度对MFC产电、污染物脱除、微生物生长和群落的影响,基于耐盐微生物、生物膜、反应器结构及扩展应用等方面提出未来MFC处理高盐废水的研究方向。
中图分类号:
成少安, 黄志鹏, 于利亮, 毛政中, 黄浩斌, 孙怡. 微生物燃料电池处理高盐废水的研究进展[J]. 化工学报, 2018, 69(2): 546-554.
CHENG Shao'an, HUANG Zhipeng, YU Liliang, MAO Zhengzhong, HUANG Haobing, SUN Yi. Research progress of microbial fuel cell for treating high salinity wastewater[J]. CIESC Journal, 2018, 69(2): 546-554.
[1] | DALMACIJA B, KARLOVIC E, TAMAS Z, et al. Purification of high-salinity wastewater by activated sludge process[J]. Water Research, 1996, 30(2):295-298. |
[2] | SHI X, LEFEBVRE O, NG K K, et al. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity[J]. Bioresource Technology, 2014, 153(2):79-86. |
[3] | ZHOU G, WANG Z, LI W, et al. Graphene-oxide modified polyvinyl-alcohol as microbial carrier to improve high salt wastewater treatment[J]. Materials Letters, 2015, 156:205-208. |
[4] | DAN N P, VISVANATHAN C, BASU B. Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients[J]. Bioresource Technology, 2003, 87(1):51-56. |
[5] | REID E, LIU X, JUDD S J. Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor[J]. Journal of Membrane Science, 2006, 283(1):164-171. |
[6] | WU Y, TAM N F, WONG M H. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms[J]. Marine Pollution Bulletin, 2008, 56(7):727-734. |
[7] | QIN L, LIU Q, MENG Q, et al. Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment[J]. Bioresource Technology, 2017, 224:69-77. |
[8] | NITISORAVUT R, REGMI R. Plant microbial fuel cells:a promising biosystems engineering[J]. Renewable & Sustainable Energy Reviews, 2017, 76:81-89. |
[9] | TRAPERO J R, HORCAJADA L, LINARES J J, et al. Is microbial fuel cell technology ready? An economic answer towards industrial commercialization[J]. Applied Energy, 2017, 185:698-707. |
[10] | LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology, 2004, 38(14):4040-4046. |
[11] | MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science & Technology, 2004, 38(21):5809-5814. |
[12] | 罗勇, 骆海萍, 覃邦余, 等. 盐度对MFC产电及其微生物群落的影响[J]. 中国环境科学, 2013, 33(5):832-837. LUO Y, LUO H P, QIN B Y, et al. Effects of salinity on power generation and the microbial community structure in the microbial fuel cells[J]. China Environmental Science, 2013, 33(5):832-837. |
[13] | 李凤娟, 徐菲, 李小龙, 等. 高盐度废水处理技术研究进展[J]. 环境科学与管理, 2014, 39(2):72-75. LI F J, XU F, LI X L, et al. Research on treatment of high salinity wastewater[J]. Environmental Science and Management, 2014, 39(2):72-75. |
[14] | 李玲玲. 高盐度废水生物处理特性研究[D]. 青岛:中国海洋大学, 2006. LI L L. Study of biological treatment of high-salinity wastewater[D]. Qingdao:Ocean University of China, 2006. |
[15] | 文湘华, 占新民, 王建龙, 等. 含盐废水的生物处理研究进展[J]. 环境科学, 1999, 20(3):104-106. WEN X H, ZHAN X M, WANG J L, et al. Review of the biological treatment of salinity wastewater[J]. Environmental Science, 1999, 20(3):104-106. |
[16] | 安立超, 严学亿, 胡磊, 等. 嗜盐菌的特性与高盐废水生物处理的进展[J]. 环境污染与防治, 2002, 24(5):293-296. AN L C, YAN X Y, HU L, et al. Review of characteristic of halophilic and biological treatment of hapersaline wastewater[J]. Environmental Pollution & Control, 2002, 24(5):293-296. |
[17] | 尤作亮, 蒋展鹏, 祝万鹏, 等. 海水直接利用及其环境问题分析[J]. 给水排水, 1998, 24(3):64-67. YOU Z L, JIANG Z P, ZHU W P, et al. Analysis of seawater direct utilization and its environmental problems[J]. Journal of Water Supply and Sewerage, 1998, 24(3):64-67. |
[18] | 邹高龙. 盐度变化对含氨氮废水处理的影响[D]. 长沙:湖南大学, 2008. ZOU G L. Effect of salinity variation on the treatment wastewater containing ammonia[D]. Changsha:Hunan University, 2008. |
[19] | LEFEBVRE O, HABOUZIT F, BRU V, et al. Treatment of hypersaline industrial wastewater by a microbial consortium in a sequencing batch reactor[J]. Environmental Technology, 2004, 25(5):543-554. |
[20] | LEFEBVRE O, MOLETTA R. Treatment of organic pollution in industrial saline wastewater:a literature review[J]. Water Research, 2006, 40(20):3671-3682. |
[21] | LIN S H, SHYU C T, SUN M C. Saline wastewater treatment by electrochemical method[J]. Water Research, 1998, 32(4):1059-1066. |
[22] | MA J Y, MA Z Y, YAN J H, et al. Development of an evaporation crystallizer for desalination of alkaline organic wastewater before incineration[J]. Journal of Zhejiang University Science A, 2005, 6(10):1100-1106. |
[23] | 钟璟, 韩光鲁, 陈群. 高盐有机废水处理技术研究新进展[J]. 化工进展, 2012, 31(4):920-926. ZHONG J, HAN G L, CHEN Q. Recent developments in treatment technology for highly saline organic wastewater[J]. Chemical Industry and Engineering Progress, 2012, 31(4):920-926. |
[24] | 李柄缘, 刘光全, 王莹, 等. 高盐废水的形成及其处理技术进展[J]. 化工进展, 2014, 33(2):493-497. LI B Y, LIU G Q, WANG Y, et al. Formation and treatment of high-salt wastewater[J]. Chemical Industry and Engineering Progress, 2014, 33(2):493-497. |
[25] | 吴雅琴, 杨波, 申屠勋玉, 等. 膜集成技术在高含盐废水资源化中的应用[J]. 水处理技术, 2016, 42(7):118-120. WU Y Q, YANG B, SHENTU X Y, et al. Application of membrane combined process in high saline wastewater recycling[J]. Technology of Water Treatment, 2016, 42(7):118-120. |
[26] | 杨运, 吴吉春, 唐甜. 深井地下灌注数值模型SWIFT[J]. 高校地质学报, 2010, 16(1):45-52. YANG Y, WU J C, TANG T. SWIFT:numerical model for deep-well injection[J]. Geological Journal of China Universities, 2010, 16(1):45-52. |
[27] | 王晓华, 于景琦, 陈宏坤, 等. 美国工业废液地下灌注与控制技术介绍[J]. 油气田环境保护, 2007, 17(3):41-44. WANG X H, YU J Q, CHEN H K, et al. Underground injection and control of industry waste liquid in USA[J]. Environmental Protection of Oil & Gas Fields, 2007, 17(3):41-44. |
[28] | INGRAM M. The influence of sodium chloride and temperature on the endogenous respiration of B. cereus[J]. Journal of General Physiology, 1940, 23(6):773-780. |
[29] | TOKUZ R Y, ECKENFELDER W W JR. The effect of inorganic salts on the activated sludge process performance[J]. Water Research, 1979, 13(1):99-104. |
[30] | KARGI F, UYGUR A. Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria[J]. Environmental Technology, 1996, 17(3):325-330. |
[31] | IMAI A, ONUMA K, INAMORI Y, et al. Biodegradation and adsorption in refractory leachate treatment by the biological activated carbon fluidized bed process[J]. Water Research, 1995, 29(2):687-694. |
[32] | MOHAMED A M O, MARAQA M, HANDHALY J A. Impact of land disposal of reject brine from desalination plants on soil and groundwater[J]. Desalination, 2005, 182(1):411-433. |
[33] | 高彦林, 张雁秋, 薛方亮. 铁碳微电解法处理某化工厂废水的研究[J]. 江苏环境科技, 2006, 19(5):11-13. GAO Y L, ZHANG Y Q, XUE F L. Treatment of chemical wastewater by ferric-carbon micro-electrolysis method[J]. Jiangsu Environmental Science and Technology, 2006, 19(5):11-13. |
[34] | 王宏, 郑一新, 钱彪, 等. 电解凝絮法处理高盐度有机废水的实验研究[J]. 环境科学研究, 2001, 14(2):51-53. WANG H, ZHENG Y X, QIAN B, et al. The treatment of high-salinity organic wastewater by electrocoagulation[J]. Research of Environmental Sciences, 2001, 14(2):51-53. |
[35] | 王伟, 刘俊杰, 张桂风. 焚烧法处理高浓度有机、含盐废水的研究分析[J]. 黑龙江环境通报, 2008, 32(3):70-71. WANG W, LIU J J, ZHANG G F. Research and analysis of treatment of high concentration and high salt wastewater with burning method[J]. Heilongjiang Environmental Journal, 2008, 32(3):70-71. |
[36] | 孔峰, 张晓叶, 程洁红. 蒸发浓缩-焚烧法处理高浓度医药中间体废液方案设计[J]. 环境工程, 2010, 28(4):37-38. KONG F, ZHANG X Y, CHENG J H. Conceptual design of treatment of medical waste water with high organics by evaporation and concentration-incineration[J]. Journal of Environmental Engineering, 2010, 28(4):37-38. |
[37] | KIM D H. A review of desalting process techniques and economic analysis of the recovery of salts from retentates[J]. Desalination, 2011, 270(1):1-8. |
[38] | SCHOFIELD R W, FANE A G, FELL C J D, et al. Factors affecting flux in membrane distillation[J]. Desalination, 1990, 77(90):279-294. |
[39] | KINCANNON D F, GAUDY A F. Some effects of high salt concentrations on activated sludge[J]. Journal of the Water Pollution Control Federation, 1966, 38(7):1148-1159. |
[40] | KINCANNON D F, GAUDY A F. Response of biological waste treatment systems to changes in salt concentrations[J]. Biotechnology & Bioengineering, 1968, 10(4):483-496. |
[41] | REID E, LIU X, JUDD S J. Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor[J]. Journal of Membrane Science, 2006, 283(1/2):164-171. |
[42] | 吴晶. 多效蒸发处理高盐废水及其化工模拟过程[D]. 上海:华东理工大学, 2012. WU J. Multi-effect evaporation to treat high salt water and the simulation process of it[D]. Shanghai:East China University of Science and Technology, 2012. |
[43] | 蒋勇, 阜葳, 毛联华, 等. 城市污水处理厂运行能耗影响因素分析[J]. 北京交通大学学报, 2014, 38(1):33-37. JIANG Y, FU W, MAO L H, et al. Influence factors analysis of urban sewage treatment plant on energy consumption[J]. Journal of Beijing Jiaotong University, 2014, 38(1):33-37. |
[44] | 高旭, 龙腾锐, 郭劲松. 城市污水处理能耗能效研究进展[J]. 重庆大学学报(自然科学版), 2002, 25(6):143-148. GAO X, LONG T R, GUO J S. Research progress of energy efficiency of municipal wastewater treatment[J]. Journal of Chongqing University (Natural Science Edition), 2002, 25(6):143-148. |
[45] | 赵正权, 徐冬, 张浩, 等. 中国污水处理电耗分析和节能途径[J]. 科技导报, 2010, 28(22):43-47. ZHAO Z Q, XU D, ZHANG H, et al. Power consumption of wastewater treatment and the measures of energy saving[J]. Science & Technology Review, 2010, 28(22):43-47. |
[46] | LOGAN B E, REGAN J M. Microbial fuel cells-challenges and applications[J]. Environmental Science & Technology, 2006, 40(17):5172-5180. |
[47] | LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells:methodology and technology[J]. Environmental Science & Technology, 2006, 40(17):5181-5192. |
[48] | LIU H, CHENG S, LOGAN B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J]. Environmental Science & Technology, 2005, 39(2):658-662. |
[49] | LOGAN B E, MURANO C, SCOTT K, et al. Electricity generation from cysteine in a microbial fuel cell[J]. Water Research, 2005, 39(5):942-952. |
[50] | 刘伟凤. 微生物燃料电池碳基电极的界面调控与电化学性能强化[D]. 杭州:浙江大学, 2016. LIU W F. Regulation of electrode interface for enhancing the electrochemical properties of carbon-based electrodes in microbial fuel cells[D]. Hangzhou:Zhejiang University, 2016. |
[51] | 陈杰. 针对微生物燃料电池扩大化的新型空气阴极开发研究[D]. 杭州:浙江大学, 2017. CHEN J. Research and development of novel cathode for the scaling-up of microbial fuel cell[D]. Hangzhou:Zhejiang University, 2017. |
[52] | CHOI C, HU N, LIM B. Cadmium recovery by coupling double microbial fuel cells[J]. Bioresource Technology, 2014, 170(5):361-369. |
[53] | DUTEANU N M, GHANGREKAR M M, ERABLE B, et al. Microbial fuel cells-an option for wastewater treatment[J]. Environmental Engineering & Management Journal, 2010, 9(8):1069-1087. |
[54] | DU Z, LI H, GU T. A state of the art review on microbial fuel cell:a promising technology for power generation and wastewater treatment[J]. Biotechnology Advances, 2007, 5(25):464-482. |
[55] | HARNISCH F, SCHRODER U. From MFC to MXC:chemical and biological cathodes and their potential for microbial bioelectrochemical systems[J]. Chemical Society Reviews, 2010, 39(11):4433-4448. |
[56] | RABAEY K, LISSENS G, SICILIANO S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency[J]. Biotechnology Letters, 2003, 25(18):1531-1535. |
[57] | GUI G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors & Bioelectronics, 2003, 18(4):327-34. |
[58] | RABAEY K, LISSENS G, SICILIANO S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency[J]. Biotechnology Letters, 2003, 25(18):1531-1535. |
[59] | HE L, DU P, CHEN Y, et al. Advances in microbial fuel cells for wastewater treatment[J]. Renewable & Sustainable Energy Reviews, 2017, 71:388-403. |
[60] | VIRDIS B, RABAEY K, ROZENDAL R A, et al. Simultaneous nitrification and denitrification (SND) at a microbial fuel cell (MFC) biocathode[J]. Journal of Biotechnology, 2010, 150(1):153-154. |
[61] | ZHANG J, ZHENG P, ZHANG M, et al. Kinetics of substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC)[J]. Bioresource Technology, 2013, 149(4):44-50. |
[62] | MAYERS J J, FLYNN K J, SHIELDS R J. Influence of the N:P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp[J]. Bioresource Technology, 2014, 169(5):588-595. |
[63] | HAPPE M, SUGNAUX M, CACHELIN C P, et al. Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell[J]. Bioresource Technology, 2016, 200:435-443. |
[64] | YUAN S J, SHENG G P, LI W W, et al. Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(14):5575-5580. |
[65] | LEFEBVRE O, ALMAMUN A, NG H Y. A microbial fuel cell equipped with a biocathode for organic removal and denitrification[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2008, 58(4):881-885. |
[66] | TAO Q, LUO J, ZHOU J, et al. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell[J]. Bioresource Technology, 2014, 164:402-407. |
[67] | FENG Z, RAHUNEN N, VARCOE J R, et al. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal[J]. Biosensors & Bioelectronics, 2009, 24(7):1931-1936. |
[68] | CHOI C, CUI Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2012, 107(2):522-525. |
[69] | HEIJNE A T, LIU F, RV W, et al. Copper recovery combined with electricity production in a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(11):4376-4381. |
[70] | YOU S J, ZHANG J N, YUAN Y X, et al. Development of microbial fuel cell with anoxic/oxic design for treatment of saline seafood wastewater and biological electricity generation[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(8):1077-1083. |
[71] | 刘明, 金春姬, 孙若晨. 盐度对生物阴极微生物燃料电池脱氮除碳及产电性能的影响[J]. 环保科技, 2015, 21(4):29-34. LIU M, JIN C J, SUN R C. Effects of salinity on carbon and nitrogen removal and electricity generation in a biocathode microbial fuel cell[J]. Journal of Environmental Science and Technology, 2015, 21(4):29-34. |
[72] | WANG X, CHENG S A, ZHANG X Y, et al. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)[J]. International Journal of Hydrogen Energy, 2011, 36(21):13900-13906. |
[73] | LIU H, CHENG S A, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14):5488-5493. |
[74] | MIYAHARA M, KOUZUMA A, WATANABE K. Effects of NaCl concentration on anode microbes in microbial fuel cells[J]. AMB Express, 2015, 5(1):1-9. |
[75] | LEFEBVRE O, TAN Z, KHARKWAL S, et al. Effect of increasing anodic NaCl concentration on microbial fuel cell performance[J]. Bioresource Technology, 2012, 112:336-340. |
[76] | JANNELLI N, NASTRO R A, CIGOLOTTI V, et al. Low pH, high salinity:too much for microbial fuel cells?[J]. Applied Energy, 2017, 192:543-550. |
[77] | KHUDZARI J M, TARTAKOVSKY B, RAGHAVAN G S V. Effect of C/N ratio and salinity on power generation in compost microbial fuel cells[J]. Waste Management, 2016, 48:135-142. |
[78] | AHN Y, LOGAN B E. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells[J]. Bioresource Technology, 2013, 132:436-439. |
[79] | KUSHER D J, KAMERKURA M. Physiology of halophilic eubacteria[J]. Advances in Applied Microbiology, 1986, 10:73-99. |
[80] | WANG J L, ZHANG X M, FENG Y C, et al. Effect of salinity variations on the performance of activated sludge system[J]. Biomedical Environment Sciences, 2005, 18(1):5-8. |
[81] | DINCER A R, KARGI F. Salt inhibition of nitrification and denitrification in saline wastewater[J]. Environmental Technology, 1999, 20(11):1147-1153. |
[82] | ROSA M F, ALBUQUERQUE R T, FERNANDES J M O, et al. Nitrification of saline effluents[J]. Brazilian Journal of Chemical Engineering, 1997, 14(2):151-158. |
[83] | ROSA M F, FURTADO A A L, ALBUQUERQUE R T, et al. Biofilm development and ammonia removal in the nitrification of a saline wastewater[J]. Bioresource Technology, 1998, 65(1):135-138. |
[84] | 郭姿璇, 王群, 佘宗莲. 盐度对未驯化微生物活性的影响[J]. 中国环境科学, 2017, 37(1):181-187. GUO Z X, WANG Q, SHE Z L. Effects of salinity on the activity of non-acclimated biomass[J]. China Environmental Science, 2017, 37(1):181-187. |
[85] | YOSHIE S, OGAWA T, MAKINO H, et al. Characteristics of bacteria showing high denitrification activity in saline wastewater[J]. Letters in Applied Microbiology, 2006, 42(3):277-283. |
[86] | EROGLU V, ALTINBAS M, GOMEC C Y, et al. Problems relating to high silt, salinity and ammonia in Tuzla (Istanbul) Central Wastewater Treatment Plant[C]//Proc. of the 2nd World Eng. Congress, Eng. Innovation and Sustainability:Global Challenges and Issues, Biochemical Environ. Eng. Sarawak, Malaysia, 2002. |
[87] | KUGELMAN I J, MCCARTY P L. Cation toxicity and stimulation in anaerobic waste treatment[J]. Journal of the Water Pollution Control Federation, 1965, 37(1):97-116. |
[88] | DINCER A R, KARGI F. Effects of operating parameters on performances of nitrification and denitrification processes[J]. Bioprocess and Biosystems Engineering, 2000, 23(1):75-80. |
[89] | WINSLOW C E, HAYWOOD E T. The specific potency of certain cations with reference to their effect on bacterial viability[J]. Journal of Bacteriology, 1931, 22(1):49-69. |
[90] | GAUTHIER M J, FLATAU G N, BREITTMAYER V A. Protective effect of glycine betaine on survival of Escherichia-coli-cells in marine environments[J]. Water Science & Technology, 1991, 24(2):129-132. |
[91] | ANAQNOSTOPOULOS G D. Microbial life in extreme environments[J]. Nature, 1979, 279(5714):658. |
[92] | KARGI F. Enhanced biological treatment of saline wastewater by using halophilic bacteria[J]. Biotechnology Letters, 2002, 24(19):1569-1572. |
[93] | ABOU-ELELA S I, KAMEL M M, FAWZY M E. Biological treatment of saline wastewater using a salt-tolerant microorganism[J]. Desalination, 2010, 250(1):1-5. |
[94] | ASPE E, MARTI M C, ROECKEL M. Anaerobic treatment of fishery wastewater using a marine sediment inoculum[J]. Water Research, 1997, 31(9):2147-2160. |
[95] | LEFEBVRE O, VASUDEVAN N, THANASEKARAN K, et al. Microbial diversity in hypersaline wastewater:the example of tanneries[J]. Extremophiles, 2006, 10(6):505-513. |
[96] | CORTES-LORENZO C, SIPKEMA D, RODRIGUZE-DIZA M, et al. Microbial community dynamics in a submerged fixed bed bioreactor during biological treatment of saline urban wastewater[J]. Ecological Engineering, 2014, 71:126-132. |
[97] | 王志霞, 王志岩, 武周虎. 高盐度废水生物处理现状与前景展望[J]. 工业水处理, 2002, 22(11):1-4. WANG Z X, WANG Z Y, WU Z H. Present situation and prospect of the biological treatment of wastewater with high salinity[J]. Industrial Water Treatment, 2002, 22(11):1-4. |
[98] | 何健. 高盐难降解工业废水微生物处理的污泥驯化研究与应用[D]. 南京:南京农业大学, 2000. HE J. Sludge acclimation of microbiological treatment of hypersa1ine refractory waste water[D]. Nanjing:Nanjing Agricultural University, 2000. |
[99] | 何健, 李顺鹏, 崔中利, 等. 含盐工业废水生化处理耐盐污泥驯化及其机制[J]. 中国环境科学, 2002, 22(6):546-550. HE J, LI S P, CUI Z L, et al. Industrial hypersaline wastewater biochemical treatment of salt-tolerant sludge acclimation and its mechanisms[J]. China Environmental Science, 2002, 22(6):546-550. |
[100] | WU G, GUAN Y, ZHAN X. Effect of salinity on the activity, settling and microbial community of activated sludge in sequencing batch reactors treating synthetic saline wastewater[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2008, 58(2):351-358. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[3] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[4] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[5] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[6] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[7] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[8] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[9] | 李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102. |
[10] | 靳文章, 张玉玲, 贾晓宇. 电化学高级氧化对HEDP的降解效能研究[J]. 化工学报, 2022, 73(9): 4062-4069. |
[11] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
[12] | 许贤伦, 钱旸, 张兴旺, 雷乐成. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033. |
[13] | 徐振和, 李泓江, 高雨, 礼峥, 张含烟, 徐宝彤, 丁茯, 孙亚光. In2O3/Ag:ZnIn2S4“Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
[14] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[15] | 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||