化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3045-3056.DOI: 10.11949/0438-1157.20220229
收稿日期:
2022-02-23
修回日期:
2022-05-26
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
黄仕元
作者简介:
黄仕元(1967—),男,硕士,副教授,基金资助:
Shiyuan HUANG1(),Jian DENG1,Hanqin YUAN1,Guohua WANG1,2,Xingliang WU1
Received:
2022-02-23
Revised:
2022-05-26
Online:
2022-07-05
Published:
2022-08-01
Contact:
Shiyuan HUANG
摘要:
采用溶剂热法后高温煅烧的方式制备了铁钴双金属复合催化剂,用以活化过一硫酸盐(PMS)降解偶氮染料金橙Ⅱ(OGⅡ)。通过X射线衍射仪、扫描电子显微镜、振动样品磁强计和X射线光电子能谱仪等仪器对复合材料进行了表征。考察了钴复合量、不同去除体系、催化剂投加量、PMS投加量、污染物浓度、pH和共存阴离子等因素对OGⅡ降解效果的影响,并探究了铁钴复合催化剂重复利用的效果。实验结果表明,铁钴复合催化剂可以有效活化PMS降解OGⅡ,在n(Co3O4)∶n(Fe2O3)=0.1、催化剂投加量为1.0 g/L、PMS投加量为0.4 mmol/L、OGⅡ浓度为30 mg/L、溶液pH为6.2的条件下,反应60 min后,OGⅡ的降解率达到了95.81%,其降解过程符合准一级反应动力学模型,最大反应速率常数为0.0491 min-1。复合催化剂使用4次后对OGⅡ仍有68.85%的降解率。·SO
中图分类号:
黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056.
Shiyuan HUANG, Jian DENG, Hanqin YUAN, Guohua WANG, Xingliang WU. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet[J]. CIESC Journal, 2022, 73(7): 3045-3056.
1 | Selvaraj V, Karthika T S, Mansiya C, et al. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications[J]. Journal of Molecular Structure, 2021, 1224: 129195. |
2 | Ji Q Y, Zhu F, Lei Y, et al. Fe-Co-SBA assisted by visible light can effectively activate NaHSO3 or H2O2 for enhanced degradation of Orange Ⅱ: activation of NaHSO3 versus H2O2 [J]. Microporous and Mesoporous Materials, 2021, 315: 110902. |
3 | Krishnappa B, Mannekote Shivanna J, Naik M, et al. Acid orange-7 uptake on spherical-shaped nanocarbons[J]. Nanomaterials and Nanotechnology, 2021, 11: 184798042110550. |
4 | Xu Y H, Deng C, Dong C X, et al. Synthesis and oxygen storage capability of CeO2 powders for enhanced photocatalytic degradation of acid orange 7[J]. International Journal of Photoenergy, 2022, 2022: 8594451 |
5 | Zhu K X, Jin C Z, Zhao C X, et al. Modulation synthesis of multi-shelled cobalt-iron oxides as efficient catalysts for peroxymonosulfate-mediated organics degradation[J]. Chemical Engineering Journal, 2019, 359: 1537-1549. |
6 | Dung N T, Thu T V, van Nguyen T, et al. Catalytic activation of peroxymonosulfate with manganese cobaltite nanoparticles for the degradation of organic dyes[J]. RSC Advances, 2020, 10(7): 3775-3788. |
7 | Ma Q L, Zhang X Y, Guo R N, et al. Persulfate activation by magnetic γ-Fe2O3/Mn3O4 nanocomposites for degradation of organic pollutants[J]. Separation and Purification Technology, 2019, 210: 335-342. |
8 | Yang W C, Li X Y, Jiang Z, et al. Structure-dependent catalysis of Co3O4 crystals in persulfate activation via nonradical pathway[J]. Applied Surface Science, 2020, 525: 146482. |
9 | Zhou Y B, Zhang Y L, Hu X M. Synergistic coupling Co3Fe7 alloy and CoFe2O4 spinel for highly efficient removal of 2, 4-dichlorophenol by activating peroxymonosulfate[J]. Chemosphere, 2020, 242: 125244. |
10 | Ansari M A, Asiri S M M. Green synthesis, antimicrobial, antibiofilm and antitumor activities of superparamagnetic γ-Fe2O3 NPs and their molecular docking study with cell wall mannoproteins and peptidoglycan[J]. International Journal of Biological Macromolecules, 2021, 171: 44-58. |
11 | Li R, Huang Y, Zhu D, et al. Improved oxygen activation over a carbon/Co3O4 nanocomposite for efficient catalytic oxidation of formaldehyde at room temperature[J]. Environmental Science & Technology, 2021, 55(6): 4054-4063. |
12 | Liu L L, Mi H S, Zhang M, et al. Efficient moxifloxacin degradation by CoFe2O4 magnetic nanoparticles activated peroxymonosulfate: kinetics, pathways and mechanisms[J]. Chemical Engineering Journal, 2021, 407: 127201. |
13 | Zhou Y B, Zhang Y L, Hu X M. Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo2O4- x spinel for 2, 4-dichlorophenol removal: singlet oxygen-dominated nonradical process[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597: 124568. |
14 | Busacca C, Donato A, Faro M L, et al. CO gas sensing performance of electrospun Co3O4 nanostructures at low operating temperature[J]. Sensors and Actuators B: Chemical, 2020, 303: 127193. |
15 | Niu L J, Zhang G M, Xian G, et al. Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: performance, activation mechanism and degradation pathway[J]. Separation and Purification Technology, 2021, 259: 118156. |
16 | Fan Y A, Zhou Z Y, Feng Y, et al. Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites[J]. Chemical Engineering Journal, 2020, 383: 123056. |
17 | Bai B Y, Arandiyan H, Li J H. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts[J]. Applied Catalysis B: Environmental, 2013, 142/143: 677-683. |
18 | Deng J, Feng S F, Zhang K J, et al. Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH[J]. Chemical Engineering Journal, 2017, 308: 505-515. |
19 | Guo R N, Meng Q, Zhang H X, et al. Construction of Fe2O3/Co3O4/exfoliated graphite composite and its high efficient treatment of landfill leachate by activation of potassium persulfate[J]. Chemical Engineering Journal, 2019, 355: 952-962. |
20 | Zhang H X, Nengzi L C, Liu Y, et al. Efficient removal of organic pollutant by activation of persulfate with magnetic Co3O4/CoFe2O4 composite[J]. Arabian Journal of Chemistry, 2020, 13(5): 5332-5344. |
21 | Hu L M, Zhang G S, Liu M, et al. Application of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA removal by peroxymonosulfate activation[J]. Science of the Total Environment, 2019, 647: 352-361. |
22 | Deng J, Chen Y J, Lu Y A, et al. Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in Fenton-like oxidation of rhodamine B[J]. Environmental Science and Pollution Research International, 2017, 24(16): 14396-14408. |
23 | Yang Z Q, Li Y, Zhang X Y, et al. Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 384: 123319. |
24 | Wang Y P, Ji H D, Liu W, et al. Novel CuCo2O4 composite spinel with a meso-macroporous nanosheet structure for sulfate radical formation and benzophenone-4 degradation: interface reaction, degradation pathway, and DFT calculation[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20522-20535. |
25 | Wang Q F, Shao Y S, Gao N Y, et al. Degradation kinetics and mechanism of 2, 4-di-tert-butylphenol with UV/persulfate[J]. Chemical Engineering Journal, 2016, 304: 201-208. |
26 | Yuan R X, Ramjaun S N, Wang Z H, et al. Effects of chloride ion on degradation of acid orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds[J]. Journal of Hazardous Materials, 2011, 196: 173-179. |
27 | Yuan R, Hu L, Yu P, et al. Co3O4 nanocrystals/3D nitrogen-doped graphene aerogel: a synergistic hybrid for peroxymonosulfate activation toward the degradation of organic pollutants[J]. Chemosphere, 2018, 210: 877-888. |
28 | Liu F, Li W W, Wu D C, et al. New insight into the mechanism of peroxymonosulfate activation by nanoscaled lead-based spinel for organic matters degradation: a singlet oxygen-dominated oxidation process[J]. Journal of Colloid and Interface Science, 2020, 572: 318-327. |
29 | Wang Y, Gao C Y, Zhang Y Z, et al. Bimetal-organic framework derived CoFe/NC porous hybrid nanorods as high-performance persulfate activators for bisphenol a degradation[J]. Chemical Engineering Journal, 2021, 421: 127800. |
30 | Hassani A, Eghbali P, Kakavandi B, et al. Acetaminophen removal from aqueous solutions through peroxymonosulfate activation by CoFe2O4/mpg-C3N4 nanocomposite: insight into the performance and degradation kinetics[J]. Environmental Technology & Innovation, 2020, 20: 101127. |
31 | Li Y, Ma S L, Xu S J, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: emphasizing the synergistic effect between graphitized structure and CoFe2O4 [J]. Chemical Engineering Journal, 2020, 387: 124094. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[4] | 康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799. |
[5] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[6] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[7] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[8] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[9] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[10] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[11] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[12] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[13] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[14] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[15] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||