[1] |
张克宇, 姚耀春. 锂离子电池磷酸铁锂正极材料的研究进展[J]. 化工进展, 2015, 34(1):166-172. ZHANG K Y, YAO Y C. Research progress of lithium iron phosphate cathode materials for lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2015, 34(1):166-172.
|
[2] |
徐蒙, 张竹茜, 贾力, 等. 圆柱形锂离子动力电池放电过程电化学与传热特性研究[J]. 中国电机工程学报, 2013, 33(32):54-61+5. XU M, ZHANG Z Q, JIA L, et al. Research on electrochemical and heat transfer characteristics of discharge process for cylindrical lithium-ion power battery[J]. Proceedings of the CSEE, 2013, 33(32):54-61+5.
|
[3] |
张剑波, 吴彬, 李哲. 车用动力锂离子电池热模拟与热设计的研发状况与展望[J]. 集成技术, 2014, 3(1):18-26. ZHANG J B, WU B, LI Z. Research status and prospect of thermal simulation and thermal design for vehicle power lithium-ion battery[J]. Journal of Integration Technology, 2014, 3(1):18-26.
|
[4] |
李仲兴, 李颖, 周孔亢, 等. 纯电动汽车不同行驶工况下电池组的温升研究[J]. 机械工程学报, 2014, 50(16):180-185. LI Z X, LI Y, ZHOU K K, et al. Study on the battery temperature rise with different driving cycles for pure electric vehicles[J]. Chinese Journal of Mechanical Engineering, 2014, 50(16):180-185.
|
[5] |
谢潇怡, 王莉, 何向明, 等. 锂离子动力电池安全性问题影响因素[J]. 储能科学与技术, 2017, 6(1):43-51. XIE X Y, WANG L, HE X M, et al. Influence factors of safety problems for lithium-ion battery[J]. Energy Storage Science and Technology, 2017, 6(1):43-51.
|
[6] |
胡锐鸿. 电动汽车用锂离子电池热特性及散热装置的数值模拟[D]. 广州:华南理工大学, 2014. HU R H. Numerical simulation of thermal characteristics and heat dissipation device for lithium-ion battery electric vehicle[D]. Guangzhou:South China University of Technology, 2014.
|
[7] |
蔡飞龙, 许思传, 常国峰. 纯电动汽车用锂离子电池热管理综述[J]. 电源技术, 2012, 36(9):1410-1413. CAI F L, XU S C, CHANG G F. Review on lithium-ion battery thermal management for pure electric vehicles[J]. Chinese Journal of Power Sources, 2012, 36(9):1410-1413.
|
[8] |
阳斌, 夏顺礼, 赵久志, 等. 电池组空气冷却技术研究[J]. 汽车实用技术, 2016, (10):24-26. YANG B, XIA S L, ZHAO J Z, et al. Research on air cooling technology for battery unit[J]. Automobile Applied Technology, 2016, (10):24-26.
|
[9] |
赵春荣, 曹文炅, 董缇, 等. 圆柱形锂离子电池模组微通道液冷热模型[J]. 化工学报, 2017, 68(8):3232-3241. ZHAO C R, CAO W J, DONG T, et al. The micro channel liquid cooling model for cylindrical lithium-ion battery module[J]. CIESC Journal, 2017, 68(8):3232-3241.
|
[10] |
凌子夜, 方晓明, 汪双凤, 等. 相变材料用于锂离子电池热管理系统的研究进展[J]. 储能科学与技术, 2013, 2(5):451-459. LI Z Y, FANG X M, WANG S F, et al. Research progress of the thermal management system on phase change materials for lithium ion battery[J]. Energy Storage Science and Technology, 2013, 2(5):451-459.
|
[11] |
赵佳腾, 饶中浩, 李意民. 基于相变材料的动力电池热管理数值模拟[J]. 工程热物理学报, 2016, 37(6):1275-1280. ZHAO J T, RAO Z H, LI Y M. Numerical simulation on thermal management for dynamic battery based on phase change materials[J]. Journal of Engineering Thermophysics, 2016, 37(6):1275-1280.
|
[12] |
WANG Z W, ZHANG H Y, XIA X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure[J]. International Journal of Heat and Mass Transfer, 2017, 109:958-970.
|
[13] |
陈思彤, 李微微, 王学科, 等.相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67(S1):1-6. CHEN S T, LI W W, WANG X K, et al. Thermal management on phase change material for proton exchange membrane fuel cell[J]. CIESC Journal, 2016, 67(S1):1-6.
|
[14] |
王彦红, 张成亮, 俞会根, 等. 相变材料在动力电池热管理中的应用研究进展[J]. 功能材料, 2013, 44(22):3213-3218. WANG Y H, ZHANG C L, YU H G, et al. The progress of phase change materials applied in battery thermal management[J]. Journal of Function Materials, 2013, 44(22):3213-3218.
|
[15] |
洪思慧, 张新强, 汪双凤, 等. 热管技术的锂离子动力电池热管理系统研究进展[J]. 化工进展, 2014, 33(11):2923-2927+2940. HONG S H, ZHANG X Q, WANG S F, et al. Research progress on heat pipe technology of thermal management system for lithium-ion power battery[J]. Chemical Industry and Engineering Progress, 2014, 33(11):2932-2927+2940.
|
[16] |
WU W X, YANG X Q, ZHANG G Q, et al. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion and Management, 2017, 138:486-492.
|
[17] |
ZHAO J T, LV P Z, RAO Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science, 2017, 82:182-188.
|
[18] |
TRAN T, HARMAND S, SAHUT B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery[J]. Journal of Power Sources, 2014, 264:262-272.
|
[19] |
SHAH K, MCKEE C, CHALISE D, et al. Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes[J]. Energy, 2016, 113:852-860.
|
[20] |
WORWOOD D, KELLNER Q, WOJTALA M, et al. A new approach to the internal thermal management of cylindrical battery cells for automotive applications[J]. Journal of Power Sources, 2017, 346:151-166.
|
[21] |
BASU S, HARIHARAN K S, KOLAKE S M, et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied Energy, 2016, 181:1-13.
|
[22] |
王建, 郭航, 叶芳, 等. 热管散热装置对车用锂离子电池组内温度分布影响数值模拟[J]. 化工学报, 2016, 67(S2):340-347. WANG J, GUO H, YE F, et al. Numerical simulation on heat pipe cooling device for the effect of temperature distribution of lithium ion batteries in the car[J]. CIESC Journal, 2016, 67(S2):340-347.
|
[23] |
王晋鹏, 胡欲立. 锂离子蓄电池温度场分析[J]. 电源技术, 2008, 32(2):120-121+131. WANG J P, HU Y L. The analysis of temperature field for lithium ion battery[J]. Chinese Journal of Power Sources, 2008, 32(2):120-121+131.
|
[24] |
王世学, 张宁, 高明. 动力汽车用锂电池热管理系统仿真分析[J]. 热科学与技术, 2016, 15(1):40-45. WANG S X, ZHANG N, GAO M. Simulation analysis of thermal management system for lithium battery of electric vehicle[J]. Journal of Thermal Science and Technology, 2016, 15(1):40-45.
|
[25] |
ZHAO J T, RAO Z H, HUO Y T, et al. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles[J]. Applied Thermal Engineering, 2015, 85:33-43.
|
[26] |
YE Y H, SAW L H, SHI Y X, et al. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging[J]. Applied Thermal Engineering, 2015, 86:281-291.
|
[27] |
GRECO A, CAO D P, JIANG X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes[J]. Journal of Power Sources, 2014, 257:344-355.
|
[28] |
RAMOTAR L, ROHRAUER G L, FILION R, et al. Experimental verification of a thermal equivalent circuit dynamic model on an extended range electric vehicle battery pack[J]. Journal of Power Sources, 2017, 343:383-394.
|
[29] |
WANG Q K, HE Y J, SHEN J N, et al. A unified modeling framework for lithium-ion batteries:an artificial neural network based thermal coupled equivalent circuit model approach[J]. Energy, 2017, 138:118-132.
|
[30] |
SUN H G, WANG X H, TOSSAN B, et al. Three-dimensional thermal modeling of a lithium-ion battery pack[J]. Journal of Power Sources, 2012, 206:349-356.
|