化工学报 ›› 2019, Vol. 70 ›› Issue (1): 107-115.DOI: 10.11949/j.issn.0438-1157.20180307
收稿日期:
2018-03-22
修回日期:
2018-10-08
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
吴亦农
作者简介:
邓伟峰(1987—),男,博士,助理研究员,<email>dwf@mail.sitp.ac.cn</email>|吴亦农(1968—),男,研究员,<email>wyn@mail.sitp.ac.cn</email>
基金资助:
Weifeng DENG(),Zhenhua JIANG,Shaoshuai LIU,Ankuo ZHANG,Yinong WU()
Received:
2018-03-22
Revised:
2018-10-08
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yinong WU
摘要:
设计了一台名义制冷量为50 W/170 K的大冷量脉管制冷机,采用对置活塞式动磁线性压缩机驱动,冷指的蓄冷器和脉管部件为同轴布置,采用惯性管-气库组合的被动调相机构。根据电磁-机械-声耦合场原理,建立了脉管制冷机动力学模型,对负载下的压缩机特性进行了动态仿真。为达到整机的谐振状态,对压缩机质量-弹簧系统进行了调整。整机质量(不含电控部分)小于12 kg。在230 W输入电功下,能够获得50 W/170 K的制冷性能,电机效率92.7%,整机比卡诺效率16.5%。150~200 K温区范围内制冷机比功(输入电功/制冷量)小于5 W/W,额定输入功下,200 K温区能够获得90 W的最大制冷量,该制冷机可以用于航天大型红外焦平面阵列的冷却,同时为-60~-20℃制冷温区的商业低温冰箱低温冷源的选择提供了参考。
中图分类号:
邓伟峰, 蒋珍华, 刘少帅, 张安阔, 吴亦农. 高温区大冷量脉管制冷机优化设计与实验特性[J]. 化工学报, 2019, 70(1): 107-115.
Weifeng DENG, Zhenhua JIANG, Shaoshuai LIU, Ankuo ZHANG, Yinong WU. Optimization design and experimental properties of high-temperature and high-capacity pulse tube cooler[J]. CIESC Journal, 2019, 70(1): 107-115.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
蓄冷器长度 | 47 mm | 惯性管Ⅰ | ?3×0.8 mm |
蓄冷器内径 | 13.5 mm | 惯性管Ⅱ | ? 4.5×0.8 mm |
蓄冷器外径 | 26 mm | 气库容积 | 250 ml |
脉管长度 | 63 mm | 活塞直径 | 26 mm |
脉管内径 | 13 mm | 活塞冲程 | ±6 mm |
表1 脉管冷指主要结构参数
Table 1 Main structural parameters of pulse tube cold finger
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
蓄冷器长度 | 47 mm | 惯性管Ⅰ | ?3×0.8 mm |
蓄冷器内径 | 13.5 mm | 惯性管Ⅱ | ? 4.5×0.8 mm |
蓄冷器外径 | 26 mm | 气库容积 | 250 ml |
脉管长度 | 63 mm | 活塞直径 | 26 mm |
脉管内径 | 13 mm | 活塞冲程 | ±6 mm |
1 | DavisT, TomlinsonbJ, LedbetterJ. Military space cryogenic cooling requirements for the 21st century[C]// Proceedings of 11th International Cryocooler Conference. California, America, 2001: 1-9. |
2 | RossR G. Aerospace coolers: 50-year quest for long-life cryogenic cooling in space[M]// Timmerhaus K D, Reed R P. Cryogenic Engineering: Fifty Years of Progress. New York: Springer, 2007: 225-284. |
3 | GroepW L, MullieJ C, WillemsW J, et al. Development of a 15 W coaxial pulse tube cooler[C]// Proceedings of 15th International Cryocooler Conference. California, America, 2009: 157-165. |
4 | RadebaughR. Thermodynamics of regenerative refrigerator[J]. Generation of Low Temperature and its Applications, 2003, (5): 1-20. |
5 | 戴巍. 热声制冷技术的研究前沿及进展[J]. 化工学报, 2008, 59(S2): 14-22. |
DaiW. Advances in thermoacoustic refrigeration[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(S2): 14-22. | |
6 | ZhuS W, WuP Y, ChenZ Q. Double inlet pulse tube refrigerators: an important improvement[J]. Cryogenics, 1990, 30(6): 514-520. |
7 | van der WaltN R, ReuvenU. Linear electrodynamic machine: US 5389844[P]. 1995-09-21. |
8 | ZhuS W, MatsubaraY. A numerical method of regenerator[J]. Cryogenics, 2004, 44(2): 131-140. |
9 | GaryJ, O’GallagherA, RadebaughR, et al. REGEN 3.3:User Manual[M]. National Institute of Standards and Technology, 2008. |
10 | RadebaughR, ZimmermanJ, SmithD R, et al. A comparison of three types pulse tube refrigerators: new methods for reaching 60K[C]// Kittel P. Advanced in Cryogenic Engineering. Vol.31. Proceedings of the Cryogenic Engineering Conference. New York, America, 1986: 779-789. |
11 | RoachP R, KashaniA. Pulse tube coolers with an inertance tube: theory, modeling and practice[C]// Kittel P. Advanced in Cryogenic Engineering. Vol.43. Proceedings of the Cryogenic Engineering Conference. New York, America, 1998: 1895-1902. |
12 | GedeonD. Sage User s Guide[M]. Gedeon Associates, 2009. |
13 |
ClarkJ P, WardW C, SwiftG W. Design environment for low-amplitude thermoacoustic energy conversion[J]. The Journal of the Acoustical Society of America, 2007, 122(5). DOI: 10.1121/1.2942768.
DOI |
14 | DurandD, NguyenT, TwardE. High efficiency cryocooler performance[C]// Proceedings of the Cryogenic Engineering Conference. New York, 2014: 97-104. |
15 | WiertzT, UrbanoJ. Qualification of a European large pulse tube cooler system for space applications[C]// Proceedings of 19th International Cryocooler Conference. California, America, 2016: 17-154. |
16 | 黄宇, 胡剑英, 戴巍, 等.高效同轴脉冲管制冷机性能的实验研究[J].工程热物理学报, 2011, 32(2): 189-192. |
HuangY, HuJ Y, DaiW, et al. Experimental study of a high efficiency coaxial pulse tube cryocooler[J]. Journal of Engineering Thermophysics, 2011, 32(2): 189-192. | |
17 | ArtsR, MullieJ, TanchonT, et al. LPT6510 Pulse tube cooler for 60—150 K applications[C]// Proceedings of 19th International Cryocooler Conference. California, America, 2016: 155-159. |
18 | ChassaingC, ButterworthJ, AigouyG, et al. 150 K—200 K Pulse tube cooler for micro satellites[C]// Proceedings of 18th International Cryocooler Conference. New York, America, 2014: 79-86. |
19 | MaiM, RosenhagenC, RuehlichI. Development of single piston moving magnet cryocooler SX020[C]// Proceedings of 18th International Cryocooler Conference. New York, 2014: 65-71. |
20 | ZhangA K, WuY N, LiuS S, et al. Experiment study of a coaxial pulse tube cryocooler[C]//Proceedings of 18th International Cryocooler Conference. New York, America, 2014: 151-154. |
21 | LiuS S, ChenX, ZhangA K, et al. Investigation on phase shifter of a 10 W/70 K inertance pulse tube refrigerator[J]. International Journal of Refrigeration, 2017, 74: 448-455. |
22 | 刘少帅, 张华, 张安阔, 等. 80 K脉管制冷机惯性管调相机理及优化研究[J]. 制冷学报, 2016, 37(5): 100-105. |
LiuS S, ZhangH, ZhangA K, et al. Theory and optimization study of inertance tube of 80 K pulse tube refrigerator[J]. Journal of Refrigeration, 2016, 37(5): 100-105. | |
23 | ZhangA K, ChenX, WuY N, et al. Study on a 10 W/90 K in-line pulse tube cryocooler[J]. Cryogenics, 2012, 52: 800-804. |
24 | KiT, JeongS. Optimal design of the pulse tube refrigerator with slit-type heat exchangers[J]. Cryogenics, 2010, 50: 608-614. |
25 | KiT, JeongS. Stirling-type pulse tube refrigerator with slit-type heat exchangers for HTS superconducting motor[J]. Cryogenics, 2011, 51(6): 341-346. |
26 | 刘少帅, 张安阔, 陈曦, 等. 惯性管盘绕方式对脉管制冷机性能的影响[J]. 化工学报, 2016, 67(5): 1791-1797. |
LiuS S, ZhangA K, ChenX, et al. Effect of coiling ways of inertance tube on performance of pulse tube cryocooler[J]. CIESC Journal, 2016, 67(5): 1791-1797. | |
27 | TominagaA. Thermoacoustic theory and its applications to refrigerators[C]// Proceedings of Third Japanese-Sino Joint Seminar on Small Refrigerators and Related Topics. Okayama, Japan:1989: 141-146. |
28 | SwiftG. Thermoacoustic engines[J]. Journal of the Acoustical Society of America, 1988, 84(4): 1145-1180. |
29 | SwiftG. Thermoacoustics: a unifying perspective for some engines and refrigerators[J]. Journal of the Acoustical Society of America, 2003, 113: 96-105. |
30 | WakelandR S. Use of electrodynamic drivers in thermoacoustic refrigerators[J]. Journal of the Acoustical Society of America, 2000, 107(2): 827-832. |
31 | GanZ H, WangL Y, ZhaoS Y, et al. Acoustic impedance characteristics of linear compressors[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2013, 14(7): 494-503. |
32 | RossR G, JohnsonD L, MonG, et al. Cryocooler resonance characterization[J]. Cryogenics. 1994, 34(5): 435-442. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[8] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[9] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[10] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[11] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[12] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[13] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[14] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[15] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||