化工学报 ›› 2019, Vol. 70 ›› Issue (1): 242-250.DOI: 10.11949/j.issn.0438-1157.20180663
收稿日期:
2018-06-19
修回日期:
2018-10-23
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
刘维平
作者简介:
潘璐璐(1993—),女,硕士研究生,<email>1911083253@qq.com</email>|刘维平(1965—),男,教授,<email>weiping@just.edu.cn</email>
基金资助:
Lulu PAN(),Danjing WU,Weiping LIU()
Received:
2018-06-19
Revised:
2018-10-23
Online:
2019-01-05
Published:
2019-01-05
Contact:
Weiping LIU
摘要:
以厌氧活性污泥为阳极菌种,乙酸钠为阳极底物,硫酸铜和重铬酸钾溶液为微生物燃料电池(MFC)阴极液,人工模拟含镉重金属废水为微生物电解池(MEC)阴极液,构建MFC-MEC耦合系统,利用MFC的产电驱动MEC运行,在不消耗外部能源的情况下,实现含镉重金属废水中Cd2+的去除。实验研究了MFC反应器容积、MFC堆栈、MEC电极材料、MEC阴极液pH对MFC-MEC耦合系统电性能及含镉重金属废水处理效果的影响。结果表明:MFC反应容积的扩大可以提高其产电性能,但与此同时会造成MFC的内阻升高,随着MFC容积的增加,MEC中Cd2+去除率逐渐增加,但同时MFC阴极Cr6+去除率逐渐下降;MFC堆栈可以提高工作组两端电压,串联时最大输出电压为1509 mV,Cd2+去除率为69.3%;以钛板作为MEC电极时,微生物能有效附着在阳极表面,MFC阳极COD去除率为85%,MEC中Cd2+去除率为51.5%;MEC阴极液pH在3~5时,有利于含镉重金属废水的处理,Cd2+去除率80%以上。经XRD分析,MEC阴极还原产物为CdCO3。
中图分类号:
潘璐璐, 吴丹菁, 刘维平. MFC-MEC耦合系统产电性能及处理含镉重金属废水的研究[J]. 化工学报, 2019, 70(1): 242-250.
Lulu PAN, Danjing WU, Weiping LIU. Electrical performance of MFC-MEC coupling system and treatment of heavy metal wastewater containing cadmium[J]. CIESC Journal, 2019, 70(1): 242-250.
Volume/ml | U/mV | Rin/Ω | PAn/(mW·m-2) | ηCr/% | ηCd/% |
---|---|---|---|---|---|
300 | 841 | 1789 | 547.6 | 91.3 | 40.6 |
500 | 934 | 4878 | 1815 | 83.7 | 58.0 |
700 | 1121 | 5168 | 2809 | 69.8 | 66.3 |
表1 不同反应器容积下MFC的产电性能及MEC处理废水效果
Table 1 Electrical performance of MFC and effect of MEC on wastewater treatment under different reactor volumes
Volume/ml | U/mV | Rin/Ω | PAn/(mW·m-2) | ηCr/% | ηCd/% |
---|---|---|---|---|---|
300 | 841 | 1789 | 547.6 | 91.3 | 40.6 |
500 | 934 | 4878 | 1815 | 83.7 | 58.0 |
700 | 1121 | 5168 | 2809 | 69.8 | 66.3 |
MFC devices | U/mV | PAn/(mW·m-2) | Rin/Ω | ηCr/% | ηCu/% | ηCd/% |
---|---|---|---|---|---|---|
MFCCr | 934 | 1815 | 4878 | 83.6 | — | 58.0 |
MFCCu | 607 | 1081.6 | 2547 | — | 98.3 | 89.5 |
MFCCr(stack) | 554 | 2381.4 | 4323 | 86.5 | — | 69.3 |
MFCCu(stack) | 955 | 1248.2 | 1956 | — | 98.4 | 69.3 |
表2 MFC串联堆栈对MFC-MEC耦合系统电性能及废水处理的影响
Table 2 Influence of MFC stack on electrical performance and wastewatert reatment in MFC-MEC coupling system
MFC devices | U/mV | PAn/(mW·m-2) | Rin/Ω | ηCr/% | ηCu/% | ηCd/% |
---|---|---|---|---|---|---|
MFCCr | 934 | 1815 | 4878 | 83.6 | — | 58.0 |
MFCCu | 607 | 1081.6 | 2547 | — | 98.3 | 89.5 |
MFCCr(stack) | 554 | 2381.4 | 4323 | 86.5 | — | 69.3 |
MFCCu(stack) | 955 | 1248.2 | 1956 | — | 98.4 | 69.3 |
Cathode materials | U/mV | ER/% | PAn/ (mW·m-2) | Rin/Ω | ηCu/% | ηCd/% |
---|---|---|---|---|---|---|
stainless steel | 687 | 83.7 | 8652.8 | 555 | 75.2 | 46.2 |
titanium plate | 689 | 85 | 22278.4 | 1004 | 93.7 | 51.5 |
carbon paper | 713 | 77.8 | 6350.4 | 1775 | 46.2 | 47.3 |
表3 阴极材料对耦合系统的影响
Table 3 Influence of cathode materials on coupling system
Cathode materials | U/mV | ER/% | PAn/ (mW·m-2) | Rin/Ω | ηCu/% | ηCd/% |
---|---|---|---|---|---|---|
stainless steel | 687 | 83.7 | 8652.8 | 555 | 75.2 | 46.2 |
titanium plate | 689 | 85 | 22278.4 | 1004 | 93.7 | 51.5 |
carbon paper | 713 | 77.8 | 6350.4 | 1775 | 46.2 | 47.3 |
pH | U/mV | ER/% | Rin/Ω | ηCd/% |
---|---|---|---|---|
1 | 535 | 65.0 | 672 | 45.2 |
3 | 562 | 65.0 | 1263 | 82.4 |
5 | 607 | 84.7 | 1291 | 89.5 |
表4 pH对耦合系统电性能及镉离子去除的影响
Table 4 Effect of MEC cathodic solution pH on electrical properties of coupling system and removal of cadmium ions
pH | U/mV | ER/% | Rin/Ω | ηCd/% |
---|---|---|---|---|
1 | 535 | 65.0 | 672 | 45.2 |
3 | 562 | 65.0 | 1263 | 82.4 |
5 | 607 | 84.7 | 1291 | 89.5 |
1 | KumbasarR A. Extraction of cadmium from solutions containing various heavy metal ions by Amberlite LA-2[J]. Journal of Industrial & Engineering Chemistry, 2010, 16(2): 207-213. |
2 | ChenH, ZhongC, BerkhouseH, et al. Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater[J]. Chemosphere, 2016, 155: 163-169. |
3 | BhatluriK K, MannaM S, GhoshalA K, et al. Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition[J]. Electrochimica Acta, 2017, 229: 1-7. |
4 | AwualM R, KhraishehM, AlharthiN H, et al. Efficient detection and adsorption of cadmium(Ⅱ) ions using innovative nano-composite materials[J]. Chemical Engineering Journal, 2018, 343: 118-127. |
5 | YaacoubiH, ZidaniO, MouflihM, et al. Removal of cadmium from water using natural phosphate as adsorbent [J]. Procedia Engineering, 2014, 83: 386-393. |
6 | HokkanenS, RepoE, SuopajärviT, et al. Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014, 21(3): 1471-1487. |
7 | HadavifarM, BahramifarN, YounesiH, et al. Removal of mercury(II) and cadmium(II) ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 397-405. |
8 | HeJ, LiY, WangC, et al. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers[J]. Applied Surface Science, 2017, 426: 29-39. |
9 | BhuniaP, ChatterjeeS, RudraP, et al. Chelating polyacrylonitrile beads for removal of lead and cadmium from wastewater[J]. Separation & Purification Technology, 2017, 193: 202-213. |
10 | ArendsJ B A, VerstraeteW. 100 years of microbial electricity production: three concepts for the future[J]. Microbial Biotechnology, 2012, 5(3): 333-346. |
11 | WuX, ZhuX, SongT, et al. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell[J]. Bioresource Technology, 2015, 180: 185-191. |
12 | GangadharanP, NambiI M. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2015, 71(3): 353-8. |
13 | QinB, LuoH, LiuG, et al. Nickel ion removal from wastewater using the microbial electrolysis cell[J]. Bioresour. Technol., 2012, 121(2): 458-461. |
14 | LuoH P, LiuG L, ZhangR D, et al. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell[J]. Journal of Hazardous Materials, 2014, 270(7): 153-159. |
15 | CaiW F, FangX W, XuM X, et al. Sequential recovery of copper and nickel from wastewater without net energy input[J]. Water Science & Technology, 2015, 71(5): 754-760. |
16 | ChoiC, HuN X, LimB S. Cadmium recovery by coupling double microbial fuel cells[J]. Bioresource Technology, 2014, 170: 361-369. |
17 | ShenJ Y, SunY L, HuangL P, et al. Microbial electrolysis cells with bio-cathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1084- 1095. |
18 | ZhangY, YuL, WuD, et al. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells[J]. Journal of Power Sources, 2015, 273: 1103-1113. |
19 | LuoH P, QinB Y, ZhangG L, et al. Selective recovery of and from wastewater using bioelectrochemical system[J]. Frontiers of Environmental Science & Engineering, 2015, 9(30): 522-527. |
20 | 孙彩玉, 邸雪颖, 秦必达, 等. 微生物燃料电池耦合处理重金属-有机废水性能研究[J]. 太阳能学报, 2015, 36(8): 1921-1926. |
SunC Y, DiX Y, QinB D, et al. Performance of microbial fuel cell coupled processing heavy metal wasterwater-organic wastewater[J]. Acta Energiae Solaris Sinica, 2015, 36(8): 1921-1926. | |
21 | 梁鹏, 范明志, 曹效鑫, 等. 微生物燃料电池表观内阻的构成和测量[J]. 环境科学, 2007, 28(8): 1894-1898. |
LiangP, FanM Z, CaoX X, et al. Composition and measurement of the apparent internal resistance in microbial fuel cell[J]. Environmental Science, 2007, 28(8): 1894-1898. | |
22 | 谢静怡, 李永峰, 郑阳. 环境生物电化学原理与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014: 36-41. |
XieJ Y, LiY F, ZhengY. Principles and Applications of Environmental Bioelectrochemistry[M]. Harbin: Harbin Institute of Technology Press, 2014: 36-41. | |
23 | 徐功娣, 李旭峰, 张永娟. 微生物燃料电池与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2012: 150-152. |
XuG D, LiX F, ZhangY J. Microbial Fuel Cell and Application[M]. Harbin: Harbin Institute of Technology Press, 2012: 150-152. | |
24 | 许丹, 肖恩荣, 徐栋, 等. 微生物燃料电池与人工湿地耦合系统研究进展[J]. 化工学报, 2015, 66(7): 2370-2376. |
XuD, XiaoE R, XuD, et al. Embedding microbial fuel cell into constructed wetland systems for electricity production and wastewater treatment: state-of-the-art[J]. CIESC Journal, 2015, 66(7): 2370-2376. | |
25 | 孔晓英, 李连华, 李颖, 等. 葡萄糖浓度对微生物燃料电池产电性能的影响[J]. 太阳能学报, 2013, 34(2): 349-352. |
KongX Y, LiL H, LiY, et al. Effect of glucose concentration on power generation performance of microbial fuel cells[J]. Acta Energiae Solaris Sinica, 2013, 34(2): 349-352. | |
26 | ZhouM, ChiM, LuoJ, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4427-4435. |
27 | 王辉, 李蕾, 曹羡, 等. 土壤微生物燃料电池在不同条件下的产电性能及微生物群落结构分析[J]. 东南大学学报(自然科学版), 2017, 47(6): 1141-1147. |
WangH, LiL, CaoX, et al. Performance of soil microbial fuel cells under different conditions and analysis on associated microbial communities[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(6): 1141-1147. | |
28 | MargariaV, TommasiT, PentassugliaS, et al. Effects of pH variations on anodic marine consortia in a dual chamber microbial fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(3): 1820-1829. |
29 | ManiP, KeshavarzT, ChandraT S, et al. Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: influence of mitigating pH changes in the cathode chamber[J]. Enzyme & Microbial Technology, 2017, 96: 170-176. |
30 | 张培远, 刘中良, 侯俊先. 外阻对微生物燃料电池性能的影响[J].工程热物理学报, 2012, 33(10): 1777-1780. |
ZhangP Y, LiuZ L, HouJ X. Influence of external resistance on the performance of microbial fuel cells[J]. Journal of Engineering Thermophysics, 2012, 33(10): 1777-1780. | |
31 | ColantonioN, KimY. Cadmium (Ⅱ) removal mechanisms in microbial electrolysis cells[J]. Journal of Hazardous Materials, 2016, 311: 134-141. |
32 | AeltermanP, RabaeyK, PhamH T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells [J]. Environmental Science & Technology, 2006, 40(10): 3388-3394. |
33 | GurungA, OhS E. The improvement of power output from stacked microbial fuel cells (MFCs)[J]. Energy Sources, 2012, 34(17): 1569-1576. |
34 | WuD, PanY, HuangL P, et al. Comparison of Co(II) reduction on three different cathodes of microbial electrolysis cells driven by Cu(II)-reduced microbial fuel cells under various cathode volume conditions[J]. Chemical Engineering Journal, 2015, 266: 121-132. |
35 | 李辉, 方正. 驯化期外电路对微生物燃料电池的影响[J]. 华中科技大学学报(自然科学版), 2013, 41(11): 32-36. |
LiH, FangZ. Effect of external circuits on microbial fuel cell during acclimated period[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(11): 32-36. | |
36 | ZhuangL, ZhouS, LiY, et al. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode[J]. Bioresource Technology, 2010, 101(10): 3514-3519. |
37 | 张勇. 堆砌式自驱动MFC-MEC系统回收多金属[D]. 大连: 大连理工大学, 2014. |
ZhangY. Multiple metals recovery in stackable self-driven MFC-MEC systems[D]. Dalian: Dalian University of Technology, 2014. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[4] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[7] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[8] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[9] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[10] | 胡南, 陶德敏, 杨照岚, 王学兵, 张向旭, 刘玉龙, 丁德馨. 铁炭微电解与硫酸盐还原菌耦合修复铀尾矿库渗滤水的研究[J]. 化工学报, 2023, 74(6): 2655-2667. |
[11] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[12] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[13] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[14] | 查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598. |
[15] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||