化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3859-3868.DOI: 10.11949/0438-1157.20190536
收稿日期:
2019-05-21
修回日期:
2019-07-22
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
张吉松
作者简介:
屠佳成(1994—),男,硕士研究生,基金资助:
Jiacheng TU1,2(),Le SANG2,Ning AI1,Jianhong XU2,Jisong ZHANG2()
Received:
2019-05-21
Revised:
2019-07-22
Online:
2019-10-05
Published:
2019-10-05
Contact:
Jisong ZHANG
摘要:
加氢反应是有机合成中很常见的一种反应类型,采用常规的间歇加氢釜具有反应效率低、操作烦琐和安全性差等问题。而连续加氢微反应器进行非均相催化加氢反应能提供更高的传质性能,催化剂的回收利用与产物的纯化也更为方便,能极大地提高生产效率,减少贵金属催化剂的损失。因为这些优点,连续微反应加氢技术得到了越来越多的关注。本文阐述了连续微反应加氢技术中常用的微反应器与固体金属催化剂类型,以及不同官能团非均相高效催化加氢的研究进展,在此基础,对该技术在精细化工领域的应用进行了展望。连续微反应加氢技术使得加氢过程可以在更安全、更高效、更环保的条件下完成,具有很高的工业应用价值,是未来化学化工领域重点发展的方向之一。
中图分类号:
屠佳成, 桑乐, 艾宁, 徐建鸿, 张吉松. 连续微反应加氢技术在有机合成中的研究进展[J]. 化工学报, 2019, 70(10): 3859-3868.
Jiacheng TU, Le SANG, Ning AI, Jianhong XU, Jisong ZHANG. Research progress of continuous hydrogenation in organic synthesis[J]. CIESC Journal, 2019, 70(10): 3859-3868.
1 | SheldonR A, HermanV B. Fine Chemicals Through Heterogeneous Catalysis[M]. Toronto: John Wiley & Sons, 2008. |
2 | MaoJ, GregoryD. Recent advances in the use of sodium borohydride as a solid state hydrogen store[J]. Energies, 2015, 8(1): 430-453. |
3 | MicovicV, MihailovicM. The reduction of acid amides with lithium aluminum hydride[J]. The Journal of Organic Chemistry, 1953, 18(9): 1190-1200. |
4 | YalpaniM, LunowT, KösterR. Reduction of polycyclic arenes by BH-Boranes, Ⅱ. Borane catalyzed hydrogenation of naphthalenes to tetralins[J]. Chemische Berichte,1989, 122(4): 687-693. |
5 | HsiaoY, RiveraN R, RosnerT, et al. Highly efficient synthesis of β-amino acid derivatives via asymmetric hydrogenation of unprotected enamines[J]. Journal of the American Chemical Society, 2004, 126(32): 9918-9919. |
6 | VernuccioS, GoyR, MeierA, et al. Kinetics and mass transfer of the hydrogenation of 2-methyl-3-butyn-2-ol in a structured Pd/ZnO/Al2O3 reactor[J]. Chemical Engineering Journal, 2017, 316: 121-130. |
7 | GrossmanS L, DavidiS, CohenH. Explosion risks during the confined storage of bituminous coals: calculation of gaseous hydrogen accumulation in ship holds[J]. Fuel, 1995, 74(12): 1772-1775. |
8 | GutmannB, CantilloD, KappeC O. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients[J]. Angewandte Chemie International Edition, 2015, 54(23): 6688-6728. |
9 | FaridkhouA, TourvieilleJ N, LarachiF. Reactions, hydrodynamics and mass transfer in micro-packed beds—overview and new mass transfer data[J]. Chemical Engineering and Processing: Process Intensification, 2016, 110: 80-96. |
10 | BaumannM, BaxendaleI, HornungC, et al. Synthesis of riboflavines, quinoxalinones and benzodiazepines through chemoselective flow based hydrogenations[J]. Molecules, 2014, 19(7): 9736-9759. |
11 | InghamR J, BattilocchioC, HawkinsJ M, et al. Integration of enabling methods for the automated flow preparation of piperazine-2-carboxamide[J]. Beilstein Journal of Organic Chemistry, 2014, 10(1): 641-652. |
12 | FinkM J, SchönM, RudroffF, et al. Single operation stereoselective synthesis of aerangis lactones: combining continuous flow hydrogenation and biocatalysts in a chemoenzymatic sequence[J]. ChemCatChem, 2013, 5(3): 724-727. |
13 | ClarkP, PoliakoffM, WellsA. Continuous flow hydrogenation of a pharmaceutical intermediate, [4-(3, 4-dichlorophenyl)-3, 4-dihydro-2H-naphthalenyidene] methylamine, in supercritical carbon dioxide[J]. Advanced Synthesis & Catalysis, 2007, 349(17/18): 2655-2659. |
14 | GreenwayG M, HaswellS J, MorganD O, et al. The use of a novel microreactor for high throughput continuous flow organic synthesis[J]. Sensors and Actuators B: Chemical, 2000, 63(3): 153-158. |
15 | BuissonB, DoneganS, WrayD, et al. Slurry hydrogenation in a continuous flow reactor for pharmaceutical application[J]. Chem. Today, 2009, 27(6): 12-16. |
16 | TidonaB, DesportesS, AltheimerM, et al. Liquid-to-particle mass transfer in a micro packed bed reactor[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 522-530. |
17 | CossarP J, HizartzidisL, SimoneM I, et al. The expanding utility of continuous flow hydrogenation[J]. Organic & Biomolecular Chemistry, 2015, 13(26): 7119-7130. |
18 | ClaphamB, WilsonN S, MichmerhuizenM J, et al. Construction and validation of an automated flow hydrogenation instrument for application in high-throughput organic chemistry[J]. Journal of Combinatorial Chemistry, 2007, 10(1): 88-93. |
19 | JonesR V, GodorhazyL, VargaN, et al. Continuous-flow high pressure hydrogenation reactor for optimization and high-throughput synthesis[J]. Journal of Combinatorial Chemistry, 2006, 8(1): 110-116. |
20 | IrfanM, GlasnovT N, KappeC O. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors[J]. ChemSusChem, 2011, 4(3): 300-316. |
21 | OuyangX, BesserR S. Development of a microreactor-based parallel catalyst analysis system for synthesis gas conversion[J]. Catalysis Today, 2003, 84(1/2): 33-41. |
22 | KobayashiJ, MoriY, OkamotoK, et al. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions[J]. Science, 2004, 304(5675): 1305-1308. |
23 | FengH, ZhuX, ZhangB, et al. Visualization of two-phase reacting flow behavior in a gas–liquid–solid microreactor[J]. Reaction Chemistry & Engineering, 2019, 4(4): 715-723. |
24 | HornungC H, HallmarkB, MackleyM R, et al. A palladium wall coated microcapillary reactor for use in continuous flow transfer hydrogenation[J]. Advanced Synthesis & Catalysis, 2010, 352(10): 1736-1745. |
25 | BakkerJ J W, ZieverinkM M P, ReintjensR W E G, et al. Heterogeneously catalyzed continuous-flow hydrogenation using segmented flow in capillary columns[J]. ChemCatChem, 2011, 3(7): 1155-1157. |
26 | GardinerJ, NguyenX, GenetC, et al. Catalytic static mixers for the continuous flow hydrogenation of a key intermediate of linezolid (Zyvox)[J]. Organic Process Research & Development, 2018, 22(10): 1448-1452. |
27 | HornungC H, NguyenX, CarafaA, et al. Use of catalytic static mixers for continuous flow gas-liquid and transfer hydrogenations in organic synthesis[J]. Organic Process Research & Development, 2017, 21(9): 1311-1319. |
28 | XuY, DanC, LiaoS, et al. High-performance Pd–Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation[J]. Journal of Catalysis, 2012, 291(7): 36-43. |
29 | KittisakmontreeP, PongthawornsakunB, YoshidaH, et al. The liquid-phase hydrogenation of 1-heptyne over Pd-Au/TiO2 catalysts prepared by the combination of incipient wetness impregnation and deposition-precipitation[J]. Journal of Catalysis, 2013, 297(1): 155-164. |
30 | ShimuraK, MiyazawaT, HanaokaT, et al. Preparation of Co/Al2O3 catalyst for Fischer–Tropsch synthesis: combination of impregnation method and homogeneous precipitation method[J]. Applied Catalysis A General, 2014, 475(5): 1-9. |
31 | ZhaoY, TrewynB G, SlowingI I, et al. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP[J]. Journal of the American Chemical Society, 2009, 131(24): 8398-8400. |
32 | HeQ, ShiJ. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility[J]. Journal of Materials Chemistry, 2011, 21(16): 5845-5855. |
33 | DebeckerD P, MutinP H. Non-hydrolytic sol-gel routes to heterogeneous catalysts.[J]. Chemical Society Reviews, 2012, 41(9): 3624-3650. |
34 | BabuN S, LingaiahN, KumarJ V, et al. Studies on alumina supported Pd–Fe bimetallic catalysts prepared by deposition–precipitation method for hydrodechlorination of chlorobenzene[J]. Applied Catalysis A General, 2009, 367(1): 70-76. |
35 | LiuJ, BoS, HuJ, et al. Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: metal–support interaction and excellent intrinsic activity[J]. Journal of Catalysis, 2010, 274(2): 287-295. |
36 | JungY S, YoonW L, SeoY S, et al. The effect of precipitants on Ni-Al2O3 catalysts prepared by a co-precipitation method for internal reforming in molten carbonate fuel cells[J]. Catalysis Communications, 2012, 26(6): 103-111. |
37 | ZhangX, ShenQ, HeC, et al. CoMOR zeolite catalyst prepared by buffered ion exchange for effective decomposition of nitrous oxide[J]. Journal of Hazardous Materials, 2011, 192(3): 1756-1765. |
38 | ZhuS, WangS L, JiangL H, et al. High Pt utilization catalyst prepared by ion exchange method for direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14543-14548. |
39 | SenguptaD, SahaJ, DeG, et al. Pd/Cu bimetallic nanoparticles embedded in macroporous ion-exchange resins: an excellent heterogeneous catalyst for the Sonogashira reaction[J]. Journal of Materials Chemistry A, 2014, 2(11): 3986-3992. |
40 | 戴云生, 董守安, 潘再富, 等. 催化氢解脱苄基Pd/C催化剂的研究和应用[J]. 工业催化, 2011, 19(4): 7-10. |
DaiY S, DongS A, PanZ F, et al. Research on and application of Pd/C catalysts for catalytic hydrogenolysis debenzylation[J]. Industrial Catalysis, 2011, 19(4): 7-10. | |
41 | YangS, JeongS, BanC, et al. Catalytic cleavage of ether bond in a lignin model compound over carbon-supported noble metal catalysts in supercritical ethanol[J]. Catalysts, 2019, 9(2): 158. |
42 | ByunM Y, KimJ S, BaekJ H, et al. Liquid-phase hydrogenation of maleic acid over Pd/Al2O3 catalysts prepared via deposition–precipitation method[J]. Energies, 2019, 12(2): 284. |
43 | MaL Y, SuY C, ChenJ, et al. Silica/chitosan core-shell hybrid-microsphere-supported Pd catalyst for hydrogenation of cyclohexene reaction[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12655-12662. |
44 | ZhangS L, YaoQ L, LiQ Y, et al. Complete hydrogen production from hydrazine borane over raney Ni catalyst at room temperature[J]. Energy Technology, 2019, 7(3): 1800533. |
45 | PutraR D D, TrajanoH L, LiuS D, et al. In-situ glycerol aqueous phase reforming and phenol hydrogenation over Raney Ni (R)[J]. Chemical Engineering Journal, 2018, 350: 181-191. |
46 | LinaresN, HartmannS, GalarneauA, et al. Continuous partial hydrogenation reactions by Pd@ unconventional bimodal porous titania monolith catalysts[J]. ACS Catalysis, 2012, 2(10): 2194-2198. |
47 | HitzlerM G, SmailF R, RossS K, et al. Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process[J]. Organic Process Research & Development, 1998, 2(3): 137-146. |
48 | ZhouR, ChengW, NealL M, et al. Parahydrogen enhanced NMR reveals correlations in selective hydrogenation of triple bonds over supported Pt catalyst[J]. Physical Chemistry Chemical Physics, 2015, 17(39): 26121-26129. |
49 | RehmT H, BerguerandC, EkS, et al. Continuously operated falling film microreactor for selective hydrogenation of carbon–carbon triple bonds[J]. Chemical Engineering Journal, 2016, 293: 345-354. |
50 | Moreno-MarrodanC, LiguoriF, BarbaroP. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes[J]. Beilstein Journal of Organic Chemistry, 2017, 13(1): 734-754. |
51 | OsakoT, ToriiK, HirataS, et al. Chemoselective continuous-flow hydrogenation of aldehydes catalyzed by platinum nanoparticles dispersed in an amphiphilic resin[J]. ACS Catalysis, 2017, 7(10): 7371-7377. |
52 | BaiY, CherkasovN, HubandS, et al. Highly selective continuous flow hydrogenation of cinnamaldehyde to cinnamyl alcohol in a Pt/SiO2 coated tube reactor[J]. Catalysts, 2018, 8(2): 58. |
53 | MolinariR, LavoratoC, ArgurioP. Photocatalytic reduction of acetophenone in membrane reactors under UV and visible light using TiO2 and Pd/TiO2 catalysts[J]. Chemical Engineering Journal, 2015, 274: 307-316. |
54 | MolinariR, LavoratoC, MastropietroT, et al. Preparation of Pd-loaded hierarchical FAU membranes and testing in acetophenone hydrogenation[J]. Molecules, 2016, 21(3): 394. |
55 | FanX, LiuS, YanX, et al. A continuous process for the production of 2, 2, 6, 6-tetramethylpiperidin-4-ol catalyzed by Cu-Cr/γ-Al2O3[J]. Catalysis Communications, 2010, 11(11): 960-963. |
56 | SaabyS, KnudsenK R, LadlowM, et al. The use of a continuous flow-reactor employing a mixed hydrogen-liquid flow stream for the efficient reduction of imines to amines[J]. Chemical Communications, 2005, (23): 2909-2911. |
57 | KukulaP, StuderM, BlaserH U. Chemoselective hydrogenation of α, β-unsaturated nitriles[J]. Advanced Synthesis & Catalysis, 2004, 346(12): 1487-1493. |
58 | GomezS, PetersJ A, MaschmeyerT. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: mechanistic aspects and selectivity control[J]. Advanced Synthesis & Catalysis, 2002, 344(10): 1037-1057. |
59 | SaitoY, IshitaniH, UenoM, et al. Selective hydrogenation of nitriles to primary amines catalyzed by a polysilane/SiO2‐supported palladium catalyst under continuous-flow conditions[J]. ChemistryOpen, 2017, 6(2): 211-215. |
60 | LabesR, González-CalderónD, BattilocchioC, et al. Rapid continuous Ru-catalysed transfer hydrogenation of aromatic nitriles to primary amines[J]. Synlett, 2017, 28(20): 2855-2858. |
61 | DowningR S, KunkelerP J, van BekkumH. Catalytic syntheses of aromatic amines[J]. Catalysis Today, 1997, 37(2): 121-136. |
62 | BaumannM, BaxendaleI R, LeyS V. Synthesis of 3-nitropyrrolidines via dipolar cycloaddition reactions using a modular flow reactor[J]. Synlett, 2010, 2010(5): 749-752. |
63 | HowardP W, ChenZ, GregsonS J, et al. Synthesis of a novel C2/C2′-aryl-substituted pyrrolo [2, 1-c][1,4] benzodiazepine dimer prodrug with improved water solubility and reduced DNA reaction rate[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(22): 6463-6466. |
64 | JonesR, GödörházyL, SzalayD, et al. A novel method for high-throughput reduction of compounds through automated sequential injection into a continuous-flow microfluidic reactor[J]. QSAR & Combinatorial Science, 2005, 24(6): 722-727. |
65 | SmithG V, NotheiszF. Heterogeneous Catalysis in Organic Chemistry[M]. San Diego: Academic Press, 1999. |
66 | DesaiB, DallingerD, KappeC O. Microwave-assisted solution phase synthesis of dihydropyrimidine C5 amides and esters[J]. Tetrahedron, 2006, 62(19): 4651-4664. |
67 | MatosM C, MurphyP V. Synthesis of macrolide- saccharide hybrids by ring-closing metathesis of precursors derived from glycitols and benzoic acids[J]. The Journal of Organic Chemistry, 2007, 72(5): 1803-1806. |
68 | AkienG R, LegeayJ C, WellsA, et al. The continuous catalytic debenzylation of 1, 4-dibenzyloxybenzene with H2 in THF expanded with high pressure CO2[J]. Organic Process Research & Development, 2010, 14(5): 1202-1208. |
69 | 范士明, 刘润娇, 赵园, 等. 纳米碳酸钾脱除 Fmoc 保护基的新方法[J]. 河北科技大学学报, 2018, 39(3): 243-248. |
FanS M, LiuR J, ZhaoY, et al. Novel deprotection method of Fmoc group using nano-K2CO3[J]. Journal of Hebei University of Science and Technology, 2018, 39(3): 243-248. | |
70 | FranckevičiusV, KnudsenK R, LadlowM, et al. Practical synthesis of (S)-pyrrolidin-2-yl-1H-tetrazole, incorporating efficient protecting group removal by flow-reactor hydrogenolysis[J]. Synlett, 2006, 2006(6): 889-892. |
71 | DuthionB, MetroT X, PardoD G, et al. Rearrangement of N-alkyl 1, 2-amino alcohols. Synthesis of (S)-toliprolol and (S)-propanolol[J]. Tetrahedron, 2009, 65(33): 6696-6706. |
[1] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[2] | 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783. |
[3] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[4] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[5] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[6] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[7] | 张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
[8] | 许非石, 杨丽霞, 陈光文. 超声微反应器内气液传质过程的介尺度强化机制[J]. 化工学报, 2022, 73(6): 2552-2562. |
[9] | 王宜飞, 王清强, 姬德生, 李申芳, 金楠, 赵玉潮. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514. |
[10] | 徐一鸣, 袁华, 刘素丽, 李平, 严佩蓉, 赵曦, 卢俊华, 赵唯, 张学兰. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193. |
[11] | 向亮, 钟子豪, 苏远海. 微反应器内连续制备拓扑结构聚合物的研究进展[J]. 化工学报, 2022, 73(12): 5275-5288. |
[12] | 方凯伦, 陈帅帅, 付家崴, 蒋新. 微反应器研究陈化过程对铜锰催化剂的影响[J]. 化工学报, 2022, 73(10): 4438-4447. |
[13] | 马永丽, 刘明言, 李琛, 胡宗定. 液固和气液固微型流态化研究进展[J]. 化工学报, 2022, 73(1): 46-58. |
[14] | 谢钦崟, 黄晓连, 李元, 李玲, 葛雪惠, 邱挺. TiO2平板微反应器设计优化及光催化性能研究[J]. 化工学报, 2021, 72(7): 3626-3636. |
[15] | 董晓锐, 王凯, 骆广生. 金纳米颗粒的微反应连续合成[J]. 化工学报, 2021, 72(7): 3823-3831. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||