化工学报 ›› 2019, Vol. 70 ›› Issue (10): 4080-4088.DOI: 10.11949/0438-1157.20190342
收稿日期:
2019-04-02
修回日期:
2019-05-29
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
单国荣
作者简介:
赵小燕(1992—),女,博士研究生,Xiaoyan ZHAO1,2(),Guorong SHAN1,2()
Received:
2019-04-02
Revised:
2019-05-29
Online:
2019-10-05
Published:
2019-10-05
Contact:
Guorong SHAN
摘要:
利用可逆加成-断裂链转移(RAFT)活性自由基聚合合成了一系列分子量可控、分子量分布窄的甲基丙烯酸-3-三甲氧基硅丙酯(MPS)和N-异丙基丙烯酰胺(NIPAM)的嵌段共聚物,在水溶液中分散制备温敏性的含硅纳米粒子。保持疏水链段PMPS的长度恒定,改变亲水链段PNIPAM的长度,在不同pH的水溶液中进行实验,研究亲水链段长度、pH对聚合物的临界聚集浓度、纳米粒子的尺寸和形貌以及温度变化过程中的相分离行为的影响,得到尺寸较小、溶液稳定的温度响应性含硅纳米粒子,同时具有有机物和无机物的优良特点,在生物医学、化学催化、纳米反应器、染料涂料等多领域具有广泛的应用前景。
中图分类号:
赵小燕, 单国荣. RAFT聚合制备PMPS-b-PNIPAM嵌段共聚物及温敏性纳米粒子[J]. 化工学报, 2019, 70(10): 4080-4088.
Xiaoyan ZHAO, Guorong SHAN. PMPS-b-PNIPAM copolymers synthesized by RAFT polymerization and their thermo-responsive nanoparticles[J]. CIESC Journal, 2019, 70(10): 4080-4088.
Sample | | | PDI |
---|---|---|---|
PMPS | 2800 | 2700 | 1.19 |
M10N10② | 4000 | 4100 | 1.68 |
M10N30② | 6400 | 6500 | 1.53 |
M10N50② | 8700 | 8500 | 1.32 |
表1 PMPS以及PMPS-b-PNIPAM嵌段共聚物的分子量和分子量分布
Table 1 Molecular weight and its distribution of PMPS and PMPS-b-PNIPAM block copolymers
Sample | | | PDI |
---|---|---|---|
PMPS | 2800 | 2700 | 1.19 |
M10N10② | 4000 | 4100 | 1.68 |
M10N30② | 6400 | 6500 | 1.53 |
M10N50② | 8700 | 8500 | 1.32 |
Sample | Ratio of peak areas of [—C | Ratio of peak areas of [—CH(C | ||
---|---|---|---|---|
Calculated data | Theoretical data | Calculated data | Theoretical data | |
M10N10 | 1.90 | 1.67 | 2.32 | 2.00 |
M10N30 | 4.57 | 3.67 | 5.54 | 6.00 |
M10N50 | 5.90 | 5.67 | 9.37 | 10.00 |
表2 PMPS-b-PNIPAM嵌段共聚物核磁谱图部分峰面积比值
Table 2 Ratio of peak areas in 1H NMR curves of PMPS-b-PNIPAM block copolymers
Sample | Ratio of peak areas of [—C | Ratio of peak areas of [—CH(C | ||
---|---|---|---|---|
Calculated data | Theoretical data | Calculated data | Theoretical data | |
M10N10 | 1.90 | 1.67 | 2.32 | 2.00 |
M10N30 | 4.57 | 3.67 | 5.54 | 6.00 |
M10N50 | 5.90 | 5.67 | 9.37 | 10.00 |
图4 不同pH条件下芘激发光谱在339 nm和333 nm处峰强度的比值随PMPS-b-PNIPAM嵌段共聚物浓度的变化
Fig.4 Intensity ratio (I 339/I 333) of pyrene measured by fluorescence spectroscopy as function of PMPS-b-PNIPAM copolymers concentration in different pH solutions
Sample | CAC/(mol/L) | ||
---|---|---|---|
NaOH | H2O | HCl | |
M10N10 | 9.40×10-6 | 19.10×10-6 | 42.23×10-6 |
M10N30 | 4.21×10-6 | 11.68×10-6 | 25.35×10-6 |
M10N50 | 2.10×10-6 | 5.56×10-6 | 12.71×10-6 |
表3 不同条件下聚合物的临界聚集浓度
Table 3 CAC of PMPS-b-PNIPAM copolymers in different environments
Sample | CAC/(mol/L) | ||
---|---|---|---|
NaOH | H2O | HCl | |
M10N10 | 9.40×10-6 | 19.10×10-6 | 42.23×10-6 |
M10N30 | 4.21×10-6 | 11.68×10-6 | 25.35×10-6 |
M10N50 | 2.10×10-6 | 5.56×10-6 | 12.71×10-6 |
Sample | H2O | NaOH(10-3 mol/L) | HCl(10-3 mol/L) | |||
---|---|---|---|---|---|---|
15℃ | 60℃ | 15℃ | 60℃ | 15℃ | 60℃ | |
M10N10 | 193 | 158.5 | 103.8 | 90.91 | — | — |
M10N30 | 212.7 | 147.1 | 145.3 | 98.14 | — | — |
M10N50 | 328.8 | 63.82 | 226.2 | 127.9 | 314.4 | — |
表4 不同条件下纳米粒子的尺寸
Table 4 Average nanoparticle size in different environments/nm
Sample | H2O | NaOH(10-3 mol/L) | HCl(10-3 mol/L) | |||
---|---|---|---|---|---|---|
15℃ | 60℃ | 15℃ | 60℃ | 15℃ | 60℃ | |
M10N10 | 193 | 158.5 | 103.8 | 90.91 | — | — |
M10N30 | 212.7 | 147.1 | 145.3 | 98.14 | — | — |
M10N50 | 328.8 | 63.82 | 226.2 | 127.9 | 314.4 | — |
1 | Li J J , Zhou Y N , Luo Z H , et al . A polyelectrolyte-containing copolymer with a gas-switchable lower critical solution temperature-type phase transition[J]. Polymer Chemistry, 2019, 10(2): 260-266. |
2 | Li X Y , Gao Y , Boott C E , et al . “Cross” supermicelles via the hierarchical assembly of amphiphilic cylindrical triblock comicelles[J]. Journal of the American Chemical Society, 2016, 138(12): 4087-4095. |
3 | Li X Y , Gao Y , Boott C E , et al . Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions[J]. Nature Communications, 2015, 6: No8127. |
4 | Palmer L C , Stupp S I . Molecular self-assembly into one-dimensional nanostructures[J]. Accounts of Chemical Research, 2008, 41(12): 1674-1684. |
5 | Mao H L , Shan G R , Bao Y Z , et al . Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence[J]. Soft Matter, 2016, 12(20): 4628-4637. |
6 | Li S Y , Lin D L , Zhou J F , et al . Preparation of silver nanoparticles loaded photoresponsive composite microgels and their light-controllable catalytic activity[J]. Journal of Physical Chemistry C, 2016, 120(9): 4902-4908. |
7 | Cao Z H , Ziener U , Landfester K . Synthesis of narrowly size-distributed thermosensitive poly(N-isopropylacrylamide) nanocapsules in inverse miniemulsion[J]. Macromolecules, 2010, 43(15): 6353-6360. |
8 | Bajpai A K , Shukla S K , Bhanu S , et al . Responsive polymers in controlled drug delivery[J]. Progress in Polymer Science, 2008, 33(11): 1088-1118. |
9 | Qin S H , Geng Y , Discher D E , et al . Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide)[J]. Advanced Materials, 2006, 18(21): 2905-2909. |
10 | Valade D , Jeon Y , Kessel S , et al . Influence of the Z-group on the RAFT-mediated polymerizations in nanoreactors[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2012, 50(22): 4762-4771. |
11 | Urbani C N , Monteiro M J . RAFT-mediated emulsion polymerization of styrene in water using a reactive polymer nanoreactor[J]. Australian Journal of Chemistry, 2009, 62(11): 1528-1532. |
12 | Song S , Lv H , Bi Y , et al . Research of the synthesis and film performance of silica/poly(St-BA-MPS) core-shell latexes obtained by miniemulsion co-polymerization[J]. Macromolecular Research, 2017, 25(5): 408-414. |
13 | Wang F Z , Luo Y . The morphology and mechanical properties of the hybrid films of styrene-butyl acrylate block copolymer/MMT from colloid blending[J]. Macromolecular Reaction Engineering, 2016, 10(1): 63-70. |
14 | Li F , Du M , Zheng Q . Dopamine/silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating[J]. ACS Nano, 2016, 10(2): 2910-2921. |
15 | Cao Z H , Shan G R , Sheibat-othman N , et al . Synthesis of oily core-hybrid shell nanocapsules through interfacial free radical copolymerization in miniemulsion: droplet formation and nucleation[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2010, 48(3): 593-603. |
16 | Cao Z H , Shan G R . Synthesis of polymeric nanocapsules with a crosslinked shell through interfacial miniemulsion polymerization[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2009, 47(6): 1522-1534. |
17 | Koh K , Ohno K , Tsujii Y , et al . Precision synthesis of organic/inorganic hybrid nanocapsules with a silanol-functionalized micelle template[J]. Angewandte Chemie-International Edition, 2003, 42(35): 4194-4197. |
18 | Marcu I , Daniels E S , Dimonie V L , et al . A Miniemulsion Approach to the Incorporation of Vinyltriethoxysilane into Acrylate Latexes[M]. Berlin: Springer-Verlag Berlin, 2004. |
19 | Marcu I , Daniels E S , Dimonie V L , et al . Incorporation of alkoxysilanes into model latex systems: vinyl copolymerization of vinyltriethoxysilane and n-butyl acrylate[J]. Macromolecules, 2003, 36(2): 328-332. |
20 | Zhang S W , Zhou S X , Weng Y M , et al . Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and gamma-methacryloxypropyltrime-thoxysilane[J]. Langmuir, 2006, 22(10): 4674-4679. |
21 | Ni K F , Sheibat-Othman N , Shan G R , et al . Kinetics and modeling of hybrid core-shell nanoparticles synthesized by seeded emulsion (co)polymerization of styrene and gamma-methacryloyloxypropyltrimethoxysilane[J]. Macromolecules, 2005, 38(22): 9100-9109. |
22 | Ni K F , Shan G R , Weng Z X , et al . Synthesis of hybrid core-shell nanoparticles by emulsion (co)polymerization of styrene and gamma-methacryloxypropyltrimethoxysilane[J]. Macromolecules, 2005, 38(17): 7321-7329. |
23 | Jovanovic A V , Underhill R S , Bucholz T L , et al . Oil core and silica shell nanocapsules: toward controlling the size and the ability to sequester hydrophobic compounds[J]. Chemistry of Materials, 2005, 17(13): 3375-3383. |
24 | Ni K F , Shan G R , Weng Z X . Synthesis of hybrid nanocapsules by miniemulsion (co)polymerization of styrene and gamma-methacryloxypropyltrimethoxysilane[J]. Macromolecules, 2006, 39(7): 2529-2535. |
25 | Liu B L , Deng X B , Cao S S , et al . Preparation and characterization of core/shell particles with siloxane in the shell[J]. Appl. Surf. Sci., 2006, 252(6): 2235-2241. |
26 | Ikem V O , Menner A , Bismarck A . High internal phase emulsions stabilized solely by functionalized silica particles[J]. Angewandte Chemie-International Edition, 2008, 47(43): 8277-8279. |
27 | Kan C Y , Liu D S , Kong X Z , et al . Study on the preparation and properties of styrene-butyl acrylate-silicone copolymer latices[J]. Journal of Applied Polymer Science, 2001, 82(13): 3194-3200. |
28 | Kan C , Yuan Q , Wang M , et al . Synthesis of silicone-acrylate copolymer latexes and their film properties[J]. Polymers for Advanced Technologies, 1996, 7(2): 95-97. |
29 | Zhu Y , Bi S Y , Gao X , et al . Comparison of RAFT ab initio emulsion polymerization of methyl methacrylate and styrene mediated by Oligo(methacrylic acid-b-methyl methacrylate) trithiocarbonate surfactant[J]. Macromolecular Reaction Engineering, 2015, 9(5): 503-511. |
30 | Moad G , Rizzardo E , Thang S H . Living radical polymerization by the RAFT process — a third update[J]. Australian Journal of Chemistry, 2012, 65(8): 985-1076. |
31 | Chong B Y K , Krstina J , Le T P T , et al . Thiocarbonylthio compounds [SC(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R)[J]. Macromolecules, 2003, 36(7): 2256-2272. |
32 | Quinn J F , Davis T P , Rizzardo E . Ambient temperature reversible addition-fragmentation chain transfer polymerisation[J]. Chemical Communications, 2001, 24(11): 1044-1045. |
33 | Mayadunne R T A , Rizzardo E , Chiefari J , et al . Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps[J]. Macromolecules, 2000, 33(2): 243-245. |
34 | Du B Y , Mei A X , Yang Y , et al . Synthesis and micelle behavior of (PNIPAm-PtBA-PNIPAm) m amphiphilic multiblock copolymer[J]. Polymer, 2010, 51(15): 3493-3502. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[3] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[4] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[5] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[6] | 刘定平, 陈爱桦, 张向阳, 何文浩, 王海. 铝灰半干法水解脱氮研究[J]. 化工学报, 2023, 74(3): 1294-1302. |
[7] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[8] | 许万, 陈振斌, 张慧娟, 牛昉昉, 火婷, 刘兴盛. 线性温敏性聚合物嵌段调控的 |
[9] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[10] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
[11] | 张炜, 李昊阳, 徐纯刚, 李小森. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
[12] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[13] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[14] | 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239. |
[15] | 石兴达, 陈华艳, 戈亚南, 武春瑞, 贾红友, 吕晓龙. 低界面热阻改性氮化铝和多壁碳纳米管充填PVDF构建杂化三维网络及其导热性能强化[J]. 化工学报, 2022, 73(5): 2262-2269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||