1 |
叶向果, 张校刚, 米红宇, 等 . 不同形貌Co3O4的水热-微乳液法制备及其电化学性能[J]. 物理化学学报, 2008, 24(6): 1105-1110.
|
|
Ye X G , Zhang X G , Mi H Y , et al . Hydrothermal microemulsion synthesis of Co3O4 with different morphologies and their electrochemical capacitance[J]. Acta Physico-Chimica Sinica, 2008, 24(6): 1105-1110.
|
2 |
邢宝林, 黄光许, 谌伦建, 等 . 超级电容器电极材料的研究现状与展望[J]. 材料导报, 2012, 26(19): 21-25.
|
|
Xing B L , Huang G X , Chen L J , et al . Current situation and prospect of research on electrode materials for supercapacitor[J]. Materials Review, 2012, 26(19): 21-25.
|
3 |
Guo Y G , Hu J S , Wan L J . Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(15): 2878-2887.
|
4 |
Liu C , Yu Z , Neff D , et al . Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2010, 10(12): 4863-4868.
|
5 |
Wang K , Wu H , Meng Y , et al . Conducting polymer nanowire arrays for high performance supercapacitors[J]. Small, 2014, 10(1): 14-31.
|
6 |
Yang P , Ding Y , Lin Z , et al . Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes[J]. Nano Letters, 2014, 14(2): 731-736.
|
7 |
Chen W C , Hu C C , Wang C C , et al . Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors[J]. Journal of Power Sources, 2004, 125(2): 292-298.
|
8 |
Prasad K R , Miura N . Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors[J]. Electrochemistry Communications, 2004, 6(10): 1004-1008.
|
9 |
Li S H , Liu Q H , Qi L , et al . Progress in research on manganese dioxide electrode materials for electrochemical capacitors[J]. Chinese Journal of Analytical Chemistry, 2012, 40(3): 339-346.
|
10 |
Yun Y S , Kim J M , Park H H , et al . Free-standing heterogeneous hybrid papers based on mesoporous γ-MnO2 particles and carbon nanotubes for lithium-ion battery anodes[J]. Journal of Power Sources, 2013, 244: 747-751.
|
11 |
Ju J , Zhao H , Kang W , et al . Designing MnO2 & carbon composite porous nanofiber structure for supercapacitor applications[J]. Electrochimica Acta, 2017, 258: 116-123.
|
12 |
Ren Y , Xu Q , Zhang J , et al . Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9689-9697.
|
13 |
Yuan A , Zhang Q . A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte[J]. Electrochemistry Communications, 2006, 8(7): 1173-1178.
|
14 |
Hu L , Chen W , Xie X , et al . Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading[J]. ACS Nano, 2011, 5(11): 8904-8913.
|
15 |
Xu P , Wei B , Cao Z , et al . Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers[J]. ACS Nano, 2015, 9(6): 6088-6096.
|
16 |
Li L , Hu Z A , An N , et al . Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability[J]. The Journal of Physical Chemistry C, 2014, 118(40): 22865-22872.
|
17 |
Li P , Yang Y , Shi E , et al . Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 5228-5234.
|
18 |
Yan J , Fan Z , Wei T , et al . Fast and reversible surface redox reaction of grapheme-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13): 3825-3833.
|
19 |
Yu G , Hu L , Vosgueritchian M , et al . Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors[J]. Nano Letters, 2011, 11(7): 2905-2911.
|
20 |
Wang G , Tang Q , Bao H , et al . Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance[J]. Journal of Power Sources, 2013, 241: 231-238.
|
21 |
He Y , Chen W , Li X , et al . Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2012, 7(1): 174-182.
|
22 |
Ma J , Cheng Q , Pavlínek V , et al . Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance[J]. New Journal of Chemistry, 2013, 37(3): 722-728.
|
23 |
Giovambattista N , Debenedetti P G , Rossky P J . Effect of surface polarity on water contact angle and interfacial hydration structure[J]. The Journal of Physical Chemistry B, 2007, 111(32): 9581-9587.
|
24 |
Wu Z S , Wang D W , Ren W , et al . Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors[J]. Advanced Functional Materials, 2010, 20(20): 3595-3602.
|
25 |
Walcarius A . Mesoporous materials and electrochemistry[J]. Chemical Society Reviews, 2013, 42(9): 4098-4140.
|
26 |
Wan C , Shen H , Ye X , et al . Facial synthesis of 3D MnO2 nanofibers sponge and its application in supercapacitors[J]. International Journal of Electrochemical Science, 2018, 13(12): 12320-12330.
|
27 |
Li H , Wang W , Pan F , et al . Synthesis of single-crystalline α-MnO2 nanotubes and structural characterization by HRTEM[J]. Materials Science and Engineering: B, 2011, 176(14): 1054-1057.
|
28 |
Zhang L , Li T , Ji X , et al . Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole supercapacitor electrode[J]. Electrochimica Acta, 2017, 252: 306-314.
|
29 |
Lee H Y , Goodenough J B . Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry, 1999, 144(1): 220-223.
|
30 |
Zhao L , Fan L Z , Zhou M Q , et al . Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J]. Advanced Materials, 2010, 22(45): 5202-5206.
|
31 |
Hsieh C T , Chen W Y , Cheng Y S . Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites[J]. Electrochimica Acta, 2010, 55(19): 5294-5300.
|
32 |
Feng X , Yan Z , Chen N , et al . The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors[J]. Journal of Materials Chemistry A, 2013, 1(41): 12818-12825.
|