化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1083-1088.DOI: 10.11949/j.issn.0438-1157.20181016
张玉玲1,2(),张利平2,王倩2,李旭东2,刘晓冬2,张敬红2
收稿日期:
2018-09-11
修回日期:
2018-11-06
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
张玉玲
作者简介:
张玉玲(1977—),女,博士研究生,副教授,<email>zhangyuling_hit@163.com</email>
基金资助:
Yuling ZHANG1,2(),Liping ZHANG2,Qian WANG2,Xudong LI2,Xiaodong LIU2,Jinghong ZHANG2
Received:
2018-09-11
Revised:
2018-11-06
Online:
2019-03-05
Published:
2019-03-05
Contact:
Yuling ZHANG
摘要:
再生水中磷绝大部分为无机磷,是引起循环冷却系统结垢腐蚀的重要因素。为了探究无机磷在系统内的迁移转化及其对系统的影响,无机磷的定量定性尤为重要。在分析了无机磷的SMT( standard measurements and testing)连续提取法在循环冷却系统污垢提取中应用的可行性的基础上,对SMT提取方法进行条件优化,建立了污垢中无机磷定性定量分析方法。结果表明,优化后的SMT连续提取法能够实现对系统内污垢中无机磷的完全提取,且回收率接近100%;污垢中弱吸附态磷(NH4Cl-P)、铝结合态磷(Al-P)、铁结合态磷(Fe-P)和钙结合态磷(Ca-P)4种形态无机磷能得到完全分离。
中图分类号:
张玉玲, 张利平, 王倩, 李旭东, 刘晓冬, 张敬红. 循环冷却系统污垢中无机磷提取方法优化[J]. 化工学报, 2019, 70(3): 1083-1088.
Yuling ZHANG, Liping ZHANG, Qian WANG, Xudong LI, Xiaodong LIU, Jinghong ZHANG. Optimization of extraction process of inorganic phosphorus in scale of circulating cooling system[J]. CIESC Journal, 2019, 70(3): 1083-1088.
无机磷形态 | 提取方法 |
---|---|
弱吸附态磷(NH4Cl-P) | 1 mol/L NH4Cl溶液,振荡离心,过滤,测定提取液中磷浓度 |
铝结合态磷(Al-P) | 0.5 mol/L NH4F溶液(pH 8.2),振荡,离心,过滤,测定提取液中磷浓度 |
铁结合态磷(Fe-P) | 0.1 mol/L NaOH、0.5 mol/L Na2CO3混合提取液振荡提取,离心,过滤,向提取液中加入1 ml浓硫酸,测定磷浓度 |
钙结合态磷(Ca-P) | 1 mol/L H2SO4振荡1h,离心,过滤,调pH至中性,测定提取液中磷浓度 |
残渣磷(Res-P) | 残渣550℃灼烧5 h,1 mol/L HCl,振荡,离心,过滤,测定提取液中磷浓度 |
表1 底泥中无机磷形态及SMT提取方法
Table 1 Inorganic phosphorus form and SMT extraction method in sediment
无机磷形态 | 提取方法 |
---|---|
弱吸附态磷(NH4Cl-P) | 1 mol/L NH4Cl溶液,振荡离心,过滤,测定提取液中磷浓度 |
铝结合态磷(Al-P) | 0.5 mol/L NH4F溶液(pH 8.2),振荡,离心,过滤,测定提取液中磷浓度 |
铁结合态磷(Fe-P) | 0.1 mol/L NaOH、0.5 mol/L Na2CO3混合提取液振荡提取,离心,过滤,向提取液中加入1 ml浓硫酸,测定磷浓度 |
钙结合态磷(Ca-P) | 1 mol/L H2SO4振荡1h,离心,过滤,调pH至中性,测定提取液中磷浓度 |
残渣磷(Res-P) | 残渣550℃灼烧5 h,1 mol/L HCl,振荡,离心,过滤,测定提取液中磷浓度 |
样品编号 | 沉积物质量/g | 理论含磷量/mg | 回收磷量/mg | 回收率/% |
---|---|---|---|---|
1 | 5.1354 | 258.10 | 259.73 | 100.63 |
2 | 5.1363 | 260.42 | 252.92 | 97.12 |
3 | 5.1691 | 260.59 | 262.41 | 100.70 |
4 | 4.1339 | 258.20 | 251.64 | 97.46 |
表2 静态垢的无机磷回收率
Table 2 Inorganic phosphorus recovery rate of static scale
样品编号 | 沉积物质量/g | 理论含磷量/mg | 回收磷量/mg | 回收率/% |
---|---|---|---|---|
1 | 5.1354 | 258.10 | 259.73 | 100.63 |
2 | 5.1363 | 260.42 | 252.92 | 97.12 |
3 | 5.1691 | 260.59 | 262.41 | 100.70 |
4 | 4.1339 | 258.20 | 251.64 | 97.46 |
Sample serial number | NH4Cl-P (mg/g) | Al-P (mg/g) | Fe-P (mg/g) | Ca-P (mg/g) | Total particulate inorganic phosphorus/mg | Total dissolved inorganic phosphorus/mg | Experimentally measured inorganic phosphorus /mg | Inorganic phosphorus addition/mg | Recovery rate/% | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.598 | 1.54 | 0.826 | 2.98 | 1016.06 | 55.74 | 1061.80 | 1061.58 | 100.96 | |
1.592 | 1.548 | 0.822 | 3.08 | 1009.58 | 55.74 | 1062.32 | 1061.58 | 100.35 | ||
2 | 1.552 | 2.392 | 0.634 | 1.78 | 1032.98 | 15.94 | 1048.92 | 1062.16 | 98.75 | |
1.566 | 2.412 | 0.586 | 1.792 | 1024.60 | 15.94 | 1040.54 | 1062.16 | 97.96 | ||
3 | 1.356 | 2.208 | 1.116 | 1.476 | 997.80 | 31.11 | 1028.91 | 1062.81 | 96.81 | |
1.372 | 2.17 | 1.13 | 1.488 | 1024.32 | 31.11 | 1055.42 | 1062.81 | 99.30 |
表3 无机磷的定性定量分析
Table 3 Qualitative and quantitative analysis of inorganic phosphorus
Sample serial number | NH4Cl-P (mg/g) | Al-P (mg/g) | Fe-P (mg/g) | Ca-P (mg/g) | Total particulate inorganic phosphorus/mg | Total dissolved inorganic phosphorus/mg | Experimentally measured inorganic phosphorus /mg | Inorganic phosphorus addition/mg | Recovery rate/% | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.598 | 1.54 | 0.826 | 2.98 | 1016.06 | 55.74 | 1061.80 | 1061.58 | 100.96 | |
1.592 | 1.548 | 0.822 | 3.08 | 1009.58 | 55.74 | 1062.32 | 1061.58 | 100.35 | ||
2 | 1.552 | 2.392 | 0.634 | 1.78 | 1032.98 | 15.94 | 1048.92 | 1062.16 | 98.75 | |
1.566 | 2.412 | 0.586 | 1.792 | 1024.60 | 15.94 | 1040.54 | 1062.16 | 97.96 | ||
3 | 1.356 | 2.208 | 1.116 | 1.476 | 997.80 | 31.11 | 1028.91 | 1062.81 | 96.81 | |
1.372 | 2.17 | 1.13 | 1.488 | 1024.32 | 31.11 | 1055.42 | 1062.81 | 99.30 |
1 | StutterM I, DemarsB O, LanganS J. River phosphorus cycling: separating biotic and abiotic uptake during short-term changes in sewage effluent loading[J]. Water Research, 2010, 44(15): 4425-4436. |
2 | ParsonsC T, RezanezhadF, O’ConnellD W, et al. Sediment phosphorus speciation and mobility under dynamic redox conditions[J]. Biogeosciences, 2017, 14(14): 1-36. |
3 | XiangS L, ZhouW B. Phosphorus forms and distribution in the sediments of Poyang Lake, China[J].International Journal of Sediment Research, 2011, 26(2) : 230-238. |
4 | KangX, SongJ, YuanH, et al. Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay[J]. Estuarine Coastal & Shelf Science, 2017, 188: 127-136. |
5 | 杨斌, 王婷, 王坤, 等. 一种改进的磷形态连续提取方法[J]. 环境科学与技术, 2017, 40(9): 90-97. |
YangB, WangT, WangK, et al. A modified sequential extraction method for the determination of phosphorus fraction in sediment[J]. Environmental Science & Technology, 2017, 40(9): 90-97. | |
6 | LiH, ChienS H, HsiehM K, et al. Escalating water demand for energy production and the potential for use of treated municipal wastewater[J]. Environmental Science & Technology, 2011, 45(10): 4195-4200. |
7 | 雷玉桃, 黎锐锋. 中国工业用水影响因素的长期动态作用机理[J].中国人口资源与环境, 2015, 25(2): 1- 8. |
LeiY T, LiR F. Study on the dynamic long-term interaction-mechanism of Chinese industry water consumption and influencing factors[J]. China Population, Resources and Environment, 2015, 25(2): 1- 8. | |
8 | LiuW S, ChienS H, DzombakD A, et al. Mineral scaling mitigation in cooling systems using tertiary-treated municipal wastewater[J]. Water Research, 2012, 46(14): 4488-4498. |
9 | 王绍华, 赵庆良, 任艳琴. 再生水水质对冷却水系统结垢的影响[J].环境保护科学, 2011, 37(1): 14 -17. |
WangS H, ZhaoQ L, RenY Q, et al. Effect of reclaimed water quality on scale deposit in cooling water circulation system[J]. Environmental Protection Science, 2011, 37(1): 14 -17. | |
10 | 林杨杰, 王宏, 孟露, 等. 再生水用于循环冷却系统时不锈钢腐蚀的研究[J]. 工业水处理, 2016, 36(9): 39-42. |
LinY J, WangH, MengL, et al. Research on stainless steel corrosion when reclaimed water is used in circulating cooling water systems[J]. Industrial Water Treatment, 2016, 36(9): 39-42. | |
11 | ZhangB R, ZhangL, LiF T, et al. Testing the formation of Ca–phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water [J]. Corrosion Science, 2010, 52(12): 3883-3890. |
12 | 陈海龙, 袁旭音, 王欢, 等. 苕溪干流悬浮物和沉积物的磷形态分布及成因分析[J]. 环境科学, 2015, 36(2): 464-470. |
ChenH L, YuanX Y, WangH, et al. Distributions of phosphorus fractions in suspended sediments and surface sediments of Tiaoxi Mainstr[J]. Environmental Science, 2015, 36(2): 464-470. | |
13 | ChoudhuryM R, HsiehM K, VidicR D, et al. Corrosion management in power plant cooling systems using tertiary-treated municipal wastewater as makeup water[J]. Corrosion Science, 2012, 61(4): 231-241. |
14 | LiH, HsiehM K, ChienS H, et al. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater[J]. Water Research, 2011, 45(2): 748. |
15 | 黄刚华, 王月, 张强, 等. 中水回用对循环冷却水系统影响研究进展[J]. 水处理技术, 2016, (2): 15-18. |
HuangG H, WangY, ZhangQ, et al. Research progress on the effect of reclaimed water reuse on circulating cooling water system[J]. Technology of Water Treatment, 2016, (2): 15-18. | |
16 | WangC, LiS P, LiT D. Calcium carbonate inhibition by a phosphonate-terminated poly(maleic-co-sulfonate) polymeric inhibitor[J]. Desalination, 2009, 249(1): 1-4. |
17 | 刘天庆, 李香琴, 王鸿灵, 等. 水系统中微生物与碳酸钙混合垢形成过程的研究[J]. 高校化学工程学报, 2002, 16(3): 263-269. |
LiuT Q, LiX Q, WangH L, et al. Study on the formation process of microbial and calcium carbonate mixed scale in water system[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(3): 263-269. | |
18 | HsiehM K, LiH, ChienS H, et al. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems[J]. Water Environment Research A Research Publication of the Water Environment Federation, 2010, 82(12): 2346-2356. |
19 | TouirR, DkhirecheN, TouhamiM E, et al. Study of phosphonate addition and hydrodynamic conditions on ordinary steel corrosion inhibition in simulated cooling water[J]. Materials Chemistry & Physics, 2010, 122(1): 1-9. |
20 | NowackB. Environmental chemistry of phosphonates[J]. Water Research, 2003, 37(11): 2533-2546. |
21 | 金晓丹, 吴昊, 王启明, 等. 钙离子和pH对长江河口青草沙水库水体磷浓度的影响[J]. 环境工程技术学报, 2016, 6(5): 462-468. |
JinX D, WuH, WangQ M, et al. Impact of calcium and pH on content of phosphorus in water of Qingcaosha reservoir of Yangtze estuary[J]. Journal of Environmental Engineering Technology, 2016, 6(5): 462-468. | |
22 | RafieeradA R, AshraM R, MahmoodianR, et al. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: a review paper[J]. Materials Science and Engineering C, 2015, 57: 397–413. |
23 | RubanV, BrigaultS, DemareE D, et al. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France[J]. Journal of Environmental Monitoring, 1999, 1(4): 403-407. |
24 | HiehjesA H, LijklemaL. Fractionation of inorganic phosphorus in calcareors sediments [J]. Journal of Environmental Quality, 1980, 8: 130-132. |
25 | RuttenbergK C. Development of a sequential extraction method for different forms of phosphorus in marine sediments [J]. Limnology Oceanography, 1992, 37: 1460-1482. |
26 | GoltermanH L. Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods[J]. Hydrobiologia, 1996, 335(1): 87-95. |
27 | 刘冠男, 董黎明, 王小辉. 湖泊沉积物中三种磷提取方法比较[J]. 岩矿测试, 2011, 30(3): 276-280. |
LiuG N, DongL M, WangX H. Comparison of three extraction methods of phosphorus in lacustrine sediments[J]. Rock and Mineral Analysis, 2011, 30(3): 276-280. | |
28 | 许春雪, 袁建, 王亚平, 等. 沉积物中磷的赋存形态及磷形态顺序提取分析方法[J]. 岩矿测试, 2011, 30(6) : 785-794. |
XuC X, YuanJ, WangY P, et al. Speciation and release mechanism of phosphorus in sediments and analysis methods for sequential extraction[J]. Rock and Mineral Analysis, 2011, 30(6) : 785-794. | |
29 | 沈雪莲, 周振, 任伟超, 等. 城镇污水处理厂污泥中磷的形态分布及生物可利用性分析[J]. 环境工程学报, 2016, 10(3): 1200-1204. |
ShenX L, ZhouZ, RenW C, et al. Fractionation and bioavailability of phosphorus in sludge from municipal wastewater treatment plants[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1200-1204. | |
30 | 宋明阳, 李敏, 袁溪, 等. 污水处理厂污泥磷形态及低温热解-碱解联合处理的释磷效果研究[J]. 环境工程, 2018, (1): 112-117. |
SongM Y, LiM, YuanX, et al. Phosphorus decomposition in sewage treatment plant sewage and hot alkali pretreatment for phosphorus release efficiency[J]. Environmental Engineering, 2018, (1): 112-117. | |
31 | 郭晨辉, 李和祥, 方芳, 等. 黄河甘宁蒙段表层沉积物中总磷3种提取方法的比较[J]. 中国环境监测, 2017, (6): 95-99. |
GuoC H, LiH X, FangF, et al. Comparison of three extraction methods of total phosphorus in surface sediments from Gansu, Ningxia and Inner Mongolia sections of the Yellow River[J]. Environmental Monitoring in China, 2017, (6): 95-99. | |
32 | ZhaoG Q, ShengY Q, JiangM, et al. The biogeochemical characteristics of phosphorus in coastal sediments under high salinity and dredging conditions[J]. Chemosphere, 2019, 215(1): 681-692. |
33 | WaterlotC. Alternative approach to the standard, measurements and testing programme used to establish phosphorus fractionation in soils[J]. Analytica Chimica Acta, 2018, 1003: 26-33. |
34 | 王书航, 张博, 姜霞, 等. 采用连续分级提取法研究沉积物中磷的化学形态[J]. 环境科学研究, 2015, 28(9): 1382-1388. |
WangS H, ZhangB, JiangX, et al. Analysis of phosphorus fractions in sediments by sequential extraction[J]. Research of Environmental Sciences, 2015, 28(9): 1382-1388. | |
35 | 李悦, 乌大年, 薛永先. 沉积物中不同形态磷提取方法的改进及其环境地球化学意义[J]. 海洋环境科学, 1998, 17(1): 15-20. |
LiY, WuD N, XueY X. Improvement of extraction methods of different forms of phosphorus in sediments and their environmental geochemical significance[J]. Marine Environmental Science, 1998, 17(1): 15-20. | |
36 | AydinI, ImamogluS, AydinF, et al. Determination of mineral phosphate species in sedimentary phosphate rock in Mardin, SE Anatolia, Turkey by sequential extraction[J]. Microchem. J., 2009, 91: 63-69. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[4] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[5] | 魏小兰, 戚文杰, 丁静, 陆建峰, 王维龙, 刘书乐. 氯化物熔盐中铬的价态对镍基合金腐蚀性的影响[J]. 化工学报, 2022, 73(7): 3182-3192. |
[6] | 赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173. |
[7] | 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522. |
[8] | 张凤丽, 潘辉, 王金江. 基于多元状态估计的热交换器多参数关联预警方法[J]. 化工学报, 2022, 73(2): 814-826. |
[9] | 谢广烁, 张斯亮, 王家瑞, 肖娟, 王斯民. 自转式内置转子颗粒污垢抑制特性研究[J]. 化工学报, 2022, 73(12): 5384-5393. |
[10] | 苏国庆, 张建文, 李彦. 蝶阀后管线腐蚀发生与发展机制研究[J]. 化工学报, 2022, 73(12): 5504-5516. |
[11] | 王景涛, 宋凡福, 徐志明, 贾玉婷. Ni-P-PTFE复合镀层对颗粒污垢沉积特性影响研究[J]. 化工学报, 2022, 73(10): 4594-4602. |
[12] | 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481. |
[13] | 郭中权, 邹湘, 毛维东, 孙邃, 马赛, 吕顺之, 刘雪菲, 王远. 矿井水脱盐过程中卷式反渗透膜性能的数值模拟研究[J]. 化工学报, 2021, 72(9): 4808-4815. |
[14] | 李海燕, 刘欢, 张秀菊, 王阁义, 周巧燕, 陈同舟, 姚洪. HVOF喷涂用于提高锅炉换热面耐磨损耐腐蚀性能综述[J]. 化工学报, 2021, 72(4): 1833-1846. |
[15] | 谭卓伟, 杨留洋, 王振波, 豆肖辉, 张大磊, 张明阳, 金有海. 高剪切力流场下X80管线钢局部腐蚀深坑诱导局部湍流交互机理研究[J]. 化工学报, 2021, 72(4): 2203-2212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||