化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4594-4602.DOI: 10.11949/0438-1157.20220909
收稿日期:
2022-06-28
修回日期:
2022-08-05
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
贾玉婷
作者简介:
王景涛(1985—),男,博士,副教授,wjt@neepu.edu.cn
基金资助:
Jingtao WANG(), Fanfu SONG, Zhiming XU, Yuting JIA()
Received:
2022-06-28
Revised:
2022-08-05
Online:
2022-10-05
Published:
2022-11-02
Contact:
Yuting JIA
摘要:
为探究Ni-P-PTFE复合镀层对颗粒污垢沉积特性的影响,利用化学镀工艺在碳钢表面制备Ni-P-PTFE复合镀层,以TiO2纳米颗粒为研究对象,通过实验和理论分析的方式研究了不同表面能(PTFE浓度)下Ni-P-PTFE复合镀层在TiO2悬浮液中的颗粒污垢沉积特性。结果表明:相比于碳钢试样,Ni-P-PTFE复合镀层对于TiO2颗粒沉积具有较好的抑制效果。随着PTFE浓度的增加,复合镀层的表面能降低,污垢沉积量呈下降趋势,在表面能为26.8 mJ/m2(PTFE=12 ml/L)时,TiO2颗粒污垢在Ni-P-PTFE复合镀层的沉积量最小。实验结果与应用扩展的DLVO理论计算出的最佳表面能结果相一致,也为针对不同类型颗粒在换热表面的沉积的抑垢提供了指导施镀的依据。
中图分类号:
王景涛, 宋凡福, 徐志明, 贾玉婷. Ni-P-PTFE复合镀层对颗粒污垢沉积特性影响研究[J]. 化工学报, 2022, 73(10): 4594-4602.
Jingtao WANG, Fanfu SONG, Zhiming XU, Yuting JIA. Study on the effect of Ni-P-PTFE composite coating on the deposition characteristics of particulate fouling[J]. CIESC Journal, 2022, 73(10): 4594-4602.
配方 | 物质 | 浓度 |
---|---|---|
主盐 | 硫酸镍 | 25 g/L |
还原剂 | 次亚磷酸钠 | 30 g/L |
缓冲剂 | 无水乙酸钠 | 10 g/L |
加速剂 | 氨基乙酸(甘氨酸) | 4 g/L |
络合剂 | 柠檬酸钠 | 6 g/L |
络合剂 | 乳酸 | 20 g/L |
纳米粒子 | PTFE | 8~14 ml/L |
稳定剂 | 碘化钾 | 10 ml/L |
表面活性剂 | FC-4(全氟辛基季铵碘化物) | 0.2 g/L |
表1 Ni-P-PTFE镀液配方
Table 1 Bath formulations of Ni-P-PTFE
配方 | 物质 | 浓度 |
---|---|---|
主盐 | 硫酸镍 | 25 g/L |
还原剂 | 次亚磷酸钠 | 30 g/L |
缓冲剂 | 无水乙酸钠 | 10 g/L |
加速剂 | 氨基乙酸(甘氨酸) | 4 g/L |
络合剂 | 柠檬酸钠 | 6 g/L |
络合剂 | 乳酸 | 20 g/L |
纳米粒子 | PTFE | 8~14 ml/L |
稳定剂 | 碘化钾 | 10 ml/L |
表面活性剂 | FC-4(全氟辛基季铵碘化物) | 0.2 g/L |
元素 | 质量分数/% |
---|---|
P | 8.5 |
Ni | 65 |
F | 11.17 |
C | 13.13 |
O | 1.88 |
Fe | 0.32 |
表2 Ni-P-PTFE复合镀层试样元素质量分数
Table 2 Ni-P-PTFE composite coating sample element mass percentage
元素 | 质量分数/% |
---|---|
P | 8.5 |
Ni | 65 |
F | 11.17 |
C | 13.13 |
O | 1.88 |
Fe | 0.32 |
测试液体 | 表面能/(mJ/m2) | ||||
---|---|---|---|---|---|
γL | γLW | γAB | γ+ | γ- | |
水 | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
二碘甲烷 | 50.8 | 50.8 | 0 | 0 | 0 |
乙二醇 | 48.0 | 29.0 | 419.0 | 1.9 | 47.0 |
表3 测试液体的表面能[28]
Table 3 The surface energy of the liquid[28]
测试液体 | 表面能/(mJ/m2) | ||||
---|---|---|---|---|---|
γL | γLW | γAB | γ+ | γ- | |
水 | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
二碘甲烷 | 50.8 | 50.8 | 0 | 0 | 0 |
乙二醇 | 48.0 | 29.0 | 419.0 | 1.9 | 47.0 |
表面 | PTFE浓度/(ml/L) | (°) | (°) | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) | |
---|---|---|---|---|---|---|---|---|
碳钢 | 82.8 | 50.6 | 62.2 | 33.9 | 0.004 | 8.22 | 34.0 | |
镀层1 | 8 | 85.7 | 59.5 | 74.7 | 28.9 | 0.2 | 10.5 | 31.8 |
镀层2 | 10 | 93.1 | 62.1 | 79.4 | 27.3 | 0.2 | 5.9 | 29.6 |
镀层3 | 12 | 94.7 | 65.0 | 71.0 | 25.7 | 0.1 | 2.5 | 26.8 |
镀层4 | 14 | 99.8 | 68.0 | 82.4 | 24.0 | 0.05 | 2.8 | 24.7 |
表4 碳钢和不同PTFE浓度下Ni-P-PTFE复合镀层的表面能参数
Table 4 Surface energy of carbon steel and Ni-P-PTFE composite coatings at different concentrations of PTFE
表面 | PTFE浓度/(ml/L) | (°) | (°) | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) | |
---|---|---|---|---|---|---|---|---|
碳钢 | 82.8 | 50.6 | 62.2 | 33.9 | 0.004 | 8.22 | 34.0 | |
镀层1 | 8 | 85.7 | 59.5 | 74.7 | 28.9 | 0.2 | 10.5 | 31.8 |
镀层2 | 10 | 93.1 | 62.1 | 79.4 | 27.3 | 0.2 | 5.9 | 29.6 |
镀层3 | 12 | 94.7 | 65.0 | 71.0 | 25.7 | 0.1 | 2.5 | 26.8 |
镀层4 | 14 | 99.8 | 68.0 | 82.4 | 24.0 | 0.05 | 2.8 | 24.7 |
种类 | 平均 粒径/nm | 纯度/% | 比表面积/(m2/g) | 密度/ (g/cm3) | 晶型 | 颜色 |
---|---|---|---|---|---|---|
TiO2 | 40 | 99.8 | 160 | 4.26 | 锐钛 | 白色 |
表5 TiO2纳米颗粒的相关参数
Table 5 Parameters of TiO2 nanoparticles
种类 | 平均 粒径/nm | 纯度/% | 比表面积/(m2/g) | 密度/ (g/cm3) | 晶型 | 颜色 |
---|---|---|---|---|---|---|
TiO2 | 40 | 99.8 | 160 | 4.26 | 锐钛 | 白色 |
图10 流动条件下不同PTFE浓度下复合镀层表面的污垢沉积量
Fig.10 Fouling deposition on the surface of composite coatings under different PTFE concentrations under flow conditions
31.73 | 0.08 | 35.14 | 35.08 |
表6 TiO2(40 nm)表面能
Table 6 Surface energy of TiO2(40 nm)
31.73 | 0.08 | 35.14 | 35.08 |
1 | 杨善让, 徐志明, 孙灵芳, 等. 换热设备污垢与对策[M]. 北京: 科学出版社, 2004: 17. |
Yang S R, Xu Z M, Sun L F, et al. Fouling of Heat Exchange Equipment and Countermeasure[M]. Beijing: Science Press, 2004: 17. | |
2 | Kuruneru S T W, Vafai K, Sauret E, et al. Application of porous metal foam heat exchangers and the implications of particulate fouling for energy-intensive industries[J]. Chemical Engineering Science, 2020, 228: 115968. |
3 | Xu Z M, Han Z M, Sun A D, et al. Numerical study of particulate fouling characteristics in a rectangular heat exchange channel[J]. Applied Thermal Engineering, 2019, 154: 657-667. |
4 | 徐志明, 熊骞, 耿晓娅, 等. 腰槽开孔矩形翼涡流发生器纳米氧化镁颗粒污垢特性[J]. 化工学报, 2016, 67(10): 4072-4079. |
Xu Z M, Xiong Q, Geng X Y, et al. Fouling characteristics of magnesia nanoparticles on rectangular wing vortex generator with hole punched at waist groove[J]. CIESC Journal, 2016, 67(10): 4072-4079. | |
5 | Han Z M, Xu Z M. Experimental and numerical investigation on particulate fouling characteristics of vortex generators with a hole[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119130. |
6 | Jung S Y, Jeong J, Park J D, et al. Interplay between particulate fouling and its flow disturbance: numerical and experimental studies[J]. Journal of Membrane Science, 2021, 635: 119497. |
7 | Yang Q R, Zhang Z L, Yao E R, et al. Experimental study of the particulate dirt characteristics on pipe heat transfer surface[J]. Journal of Thermal Science, 2019, 28(5): 1054-1064. |
8 | Pu J H, Shen C, Yang H T, et al. Investigating heat transfer and frosting performance of air source heat pumps with the impact of particulate fouling[J]. Energy for Sustainable Development, 2021, 65: 194-203. |
9 | 王兵兵, 王高翔, 高轶, 等. 颗粒团聚对水基铜纳米流体导热系数影响机理研究[J]. 东北电力大学学报, 2022, 42(3): 83-90. |
Wang B B, Wang G X, Gao Y, et al. Investigation on effect of particles agglomeration on thermal conductivity of water-based copper nanofluids[J]. Journal of Northeast Electric Power University, 2022, 42(3): 83-90. | |
10 | Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(6): 719-734. |
11 | 胡平, 常恬, 陈震宇, 等. 纳米Fe3O4磁性颗粒表面改性及其在医学和环保领域的应用[J]. 化工学报, 2017, 68(7): 2641-2652. |
Hu P, Chang T, Chen Z Y, et al. Surface modification and application in biomedicine and environmental protection of magnetic Fe3O4 nanoparticles[J]. CIESC Journal, 2017, 68(7): 2641-2652. | |
12 | 王赫, 秦楠, 郭鑫, 等. 锂离子电容器硬碳负极材料的表面改性及其电化学性能研究[J]. 化工学报, 2020, 71(6): 2735-2742. |
Wang H, Qin N, Guo X, et al. Surface modification and electrochemical properties of hard carbon anode material for lithium ion capacitors[J]. CIESC Journal, 2020, 71(6): 2735-2742. | |
13 | 牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301. |
Mou S, Zhao C Y, Xu Z G. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface[J]. CIESC Journal, 2019, 70(4): 1291-1301. | |
14 | 程延海, 邹勇, 程林, 等. 表面改性对换热面抗垢性能的影响[J]. 工程热物理学报, 2009, 30(9): 1528-1530. |
Cheng Y H, Zou Y, Cheng L, et al. Effect of surface modification on anti-fouling properties of heat exchangers[J]. Journal of Engineering Thermophysics, 2009, 30(9): 1528-1530. | |
15 | Zhang S, Liang X J, Gadd G M, et al. Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties[J]. Applied Surface Science, 2019, 490: 231-241. |
16 | Ren J, Xia W W, Feng X, et al. Surface modification of PVDF membrane by sulfonated chitosan for enhanced anti-fouling property via PDA coating layer[J]. Materials Letters, 2022, 307: 130981. |
17 | 叶朝曦. Ni-P化学镀改性换热表面阻垢特性试验研究[D]. 上海: 华东理工大学, 2014. |
Ye Z X. Experimental fouling investigation with modified surface of electroless Ni-P coating[D]. Shanghai: East China University of Science and Technology, 2014. | |
18 | 张翠杰, 刘贯军, 张培彦. Ni-P-PTFE化学复合镀工艺优化及镀层性能研究[J]. 表面技术, 2015, 44(1): 102-105, 111. |
Zhang C J, Liu G J, Zhang P Y. Process optimization of electroless Ni-P-PTFE composite plating and research on the coating performance[J]. Surface Technology, 2015, 44(1): 102-105, 111. | |
19 | Zhao Q, Liu Y, Wang S. Surface modification of water treatment equipment for reducing CaSO4 scale formation[J]. Desalination, 2005, 180: 133-138. |
20 | Matjie R, Zhang S, Zhao Q, et al. Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit[J]. Fuel, 2016, 181: 573-578. |
21 | Gu T T, Meesrisom A, Luo Y G, et al. Listeria monocytogenes biofilm formation as affected by stainless steel surface topography and coating composition[J]. Food Control, 2021, 130: 108275. |
22 | Liu Y, Zhao Q. Influence of surface energy of modified surfaces on bacterial adhesion[J]. Biophysical Chemistry, 2005, 117(1): 39-45. |
23 | Zhao Q, Wang S, Müller-Steinhagen H. Tailored surface free energy of membrane diffusers to minimize microbial adhesion[J]. Applied Surface Science, 2004, 230: 371-378. |
24 | Pereni C I, Zhao Q, Liu Y, et al. Surface free energy effect on bacterial retention[J]. Colloids and Surfaces B: Biointerfaces, 2006, 48(2): 143-147. |
25 | Zhao Q, Liu Y, Wang C, et al. Effect of surface free energy on the adhesion of biofouling and crystalline fouling[J]. Chemical Engineering Science, 2005, 60(17): 4858-4865. |
26 | Nikoo A H, Malayeri M R. Incorporation of surface energy properties into general crystallization fouling model for heat transfer surfaces[J]. Chemical Engineering Science, 2020, 215: 115461. |
27 | 王晖, 顾帼华, 邱冠周. 接触角法测量高分子材料的表面能[J]. 中南大学学报(自然科学版), 2006, 37(5): 942-947. |
Wang H, Gu G H, Qiu G Z. Evaluation of surface free energy of polymers by contact angle goniometry[J]. Journal of Central South University (Science and Technology), 2006, 37(5): 942-947. | |
28 | 王书敏, 张丽华, 代淑兰. 固体表面能测定方法研究进展[J]. 应用化工, 2020, 49(12): 3155-3161. |
Wang S M, Zhang L H, Dai S L. Research progress in the determination of solid surface energy[J]. Applied Chemical Industry, 2020, 49(12): 3155-3161. | |
29 | Zhao Q. Effect of surface free energy of graded Ni-P-PTFE coatings on bacterial adhesion[J]. Surface and Coatings Technology, 2004, 185: 199-204. |
30 | 赵士雄, 王智, 王显胜, 等. 微/纳米颗粒表面能测定方法适用性研究[J]. 环境科学学报, 2018, 38(1): 259-266. |
Zhao S X, Wang Z, Wang X S, et al. Applicability of surface energy measurement methods for micro/nano-size particles[J]. Acta Scientiae Circumstantiae, 2018, 38(1): 259-266. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[3] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[4] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[7] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[8] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[9] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[10] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[11] | 张浩, 徐惠斌, 高健, 刘帝宏, 周泽华. Geldart-D类湿颗粒倾斜落料行为及其强化[J]. 化工学报, 2023, 74(4): 1519-1527. |
[12] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[13] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
[14] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[15] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||