1 |
UNEP. Mercury fate and transport in the global atmosphere: measurement, models and policy implication report [R]. Geneva: UNEP, 2008.
|
2 |
UNEP. Global mercury assessment 2013: sources, emissions, releases and environmental transport [R]. Geneva, Switzerland: UNEP Chemicals Branch, 2013.
|
3 |
杜雯, 殷立宝, 禚玉群, 等. 100 MW燃煤电厂非碳基吸附剂喷射脱汞实验研究 [J]. 化工学报, 2014, 65(11): 4413-4419.
|
|
Du W, Yin L B, Zhuo Y Q, et al Experimental study on mercury capture using non-carbon sorbents in 100 MW coal-fired power plant[J]. CIESC Journal,2014, 65(11): 4413-4419.
|
4 |
PavlishJ H, SondrealE A, MannM D, et al. Status review of mercury control options for coal-fired power plants [J]. Fuel Process. Technol., 2003, 82(2/3): 89-165
|
5 |
GalbreathK C, ZygarlickeC J. Mercury transformations in coal combustion flue gas [J]. Fuel Processing Technology, 2006, 65(99): 289-310.
|
6 |
王铮, 薛建明, 许月阳, 等. 选择性催化还原协同控制燃煤烟气中汞排放效果影响因素研究 [J]. 中国电机工程学报, 2013, 33(14): 32-37.
|
|
WangZ, XueJ M, XuY Y, et al. Research on influencing factors of SCR’s cooperative control in mercury emissions from coal-fired flue [J]. Proceedings of the CSEE, 2013, 33(14): 32-37.
|
7 |
李建荣, 何炽, 商雪松, 等. SCR脱硝催化剂对烟气中零价汞的氧化效率研究 [J]. 燃料化学学报, 2012, 40(2): 241-246.
|
|
LiJ R, HeC, ShangX S, et al. Oxidation efficiency of elemental mercury in flue gas by SCR De-NOx catalysts [J]. Journal of Fuel Chemistry and Technology, 2012, 40(2): 241-246.
|
8 |
HowerJ C, SeniorC L, SuubergE M, et al. Mercury capture by native fly ash carbons in coal-fired power plants [J]. Progress in Energy & Combustion Science, 2010, 36(4): 510-529.
|
9 |
SakulpitakphonT, HowerJ C, TrimbleA S, et al. Mercury capture by fly ash: study of the combustion of a high-mercury coal at a utility boiler [J]. Energy Fuels, 2000, 14(3): 727-733.
|
10 |
王鹏, 吴江, 任建兴, 等. 飞灰未燃尽碳对吸附烟气汞影响的试验研究 [J]. 动力工程学报, 2012, 32(4): 332-337.
|
|
WangP, WuJ, RenJ X, et al. Experimental study on influence of unburned carbon in fly ash on mercury adsorption in flue gas [J]. Journal of Chinese Society of Power Engineering, 2012, 32(4): 332-337.
|
11 |
江贻满, 段钰锋, 杨祥花, 等. ESP飞灰对燃煤锅炉烟气汞的吸附特性 [J]. 东南大学学报(自然科学版), 2007, 37(3): 436-440.
|
|
JiangY M, DuanY F, YangX H, et.al. Adsorption characterization of coal fired flue gas mercury by ESP fly ashes [J]. Journal of Southeast University (Natural Science Edition), 2007, 37(3): 436-440.
|
12 |
KostovaI, VassilevaC, DaiS, et al. Influence of surface area properties on mercury capture behavior of coal fly ashes from some Bulgarian power plants [J]. International Journal of Coal Geology, 2013, 116/117(5): 227-235.
|
13 |
Maroto-ValerM M, ZhangY, GraniteE J, et al. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample [J]. Fuel, 2005, 84(1): 105-108.
|
14 |
程乐鸣, 岑可法, 倪明江, 等. 循环流化床锅炉炉膛热力计算 [J]. 中国电机工程学报, 2002, 22(12): 146-151.
|
|
ChengL M, CenK F, NiM J, et al. Thermal calculation of a circulating fluidized bed boiler furnace [J].Proceedings of the CSEE, 2002, 22(12): 146-151.
|
15 |
姜秀民, 孙东红, 闫澈, 等. 65t/h 示范性油页岩循环流化床电厂锅炉运行实践[J].中国电机工程学报, 2001, 21(2): 69-73.
|
|
JiangX M, SunD H, YanC, et al. Performance characteristics of 65t/h oil shale-fired circulating fluidized bed demonstration utility boiler[J].Proceedings of the CSEE, 2001, 21(2): 69-73.
|
16 |
谢磊, 毛国明, 金晓明, 等. 循环流化床锅炉燃烧过程预测控制与经济性能优化[J]. 化工学报, 2016, 67(3): 695-700.
|
|
XieL, MaoG M, JinX M, et.al. Predictive control and economic performance optimization of CFBB combustion process [J]. CIESC Journal, 2016, 67(3): 695-700.
|
17 |
YueG, CaiR, LuJ, et al. From a CFB reactor to a CFB boiler — the review of R&D progress of CFB coal combustion technology in China [J]. Powder Technology, 2017, 316: 18-28.
|
18 |
樊保国, 贾里, 李晓栋, 等. 电站燃煤锅炉飞灰特性对其吸附汞能力的影响 [J]. 动力工程学报, 2016, 36(8): 621-628.
|
|
FanB G, JiaL, LiX D. et al. Study on mercury adsorption by fly ash form coal-fired coilers of power plants [J]. Journal of Chinese Society of Power Engineering, 2016, 36(8): 621-628.
|
19 |
段钰锋, 江贻满, 杨立国, 等. 循环流化床锅炉汞排放和吸附实验研究 [J]. 中国电机工程学报, 2008, 28 (32): 1-5.
|
|
DuanY F, JiangY M, YangL G, et al. Experimental study on mercury emission and adsorption in circulating fluidized bed boiler [J]. Proceedings of the CSEE, 2008, 28 (32): 1-5.
|
20 |
黄勋, 程乐鸣, 蔡毅, 等. 循环流化床中烟气飞灰汞迁移试验研究 [J]. 化工学报, 2014, 65(4): 1387-1395.
|
|
HuangX, ChengL M, CaiY, et al. Mercury migration between flue gas and fly ash in circulating fluidized bed [J]. CIESC Journal, 2014, 65(4): 1387-1395.
|
21 |
BestP E, SolomonP R, SerioM A, et al. Relationship between char reactivity and physical and chemical structural features [J]. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. (United States), 1987, 32: 4.
|
22 |
何宏舟. 飞灰回燃对燃烧福建无烟煤CFB锅炉运行影响的研究 [J]. 热能动力工程, 2006, 21(1): 57-61+111.
|
|
HeH Z. An investigation of the impact of fly-ash re-burning on the operation of an anthracite-firing circulating fluidized bed boiler [J]. Journal of Engineering for Thermal Energy and Power, 2006, 21(1): 57-61+111.
|
23 |
ShenC, LinW, WuS, et al. Experimental study of combustion characteristics of bituminous char derived under mild pyrolysis conditions [J]. Energy & Fuels, 2009, 23(11): 3084-3091.
|
24 |
ChenC, LiQ, TaoD J, et al. Physical and chemical prosperities difference between pulverized coal boiler fly ash and circulating fluidized bed combustion ash [J]. Asian Journal of Chemistry, 2012, 24(10): 4538-4540.
|
25 |
SarkarD K. Fluidized-bed combustion boilers[M]//Thermal Power Plant. Elsevier, 2015: 159-187.
|
26 |
UttJ, GiglioR. Technology comparison of CFB versus pulverized fuel firing for utility power generation [J]. Journal of the Southern African Institute of Mining & Metallurgy, 2012, 112(6): 449-454.
|
27 |
GaoM Y, KulatosI, ChenX, et al. The effect of solid fuel type and combustion conditions on residual carbon properties and fly ash quality [J]. Proceedings of the Combustion Institute, 2002, 29(1): 475-483.
|
28 |
WangY, DuanY, YangL, et al. Experimental study on mercury transformation and removal in coal-fired boiler flue gases [J]. Fuel Processing Technology, 2009, 90(5): 643-651.
|
29 |
HowerJ C, SeniorC L, SuubergE M, et al. Mercury capture by native fly ash carbons in coal-fired power plants [J]. Progress in Energy & Combustion Science, 2010, 36(4): 510-529.
|
30 |
DunhamG E, DewallR A, SeniorC L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash [J]. Fuel Processing Technology, 2003, 82(2): 197-213.
|
31 |
SuubergE M. Thermally induced changes in reactivity of carbons [M]// Fundamental Issues in Control of Carbon Gasification Reactivity. Netherlands: Springer, 1991: 269-305.
|