化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1245-1254.DOI: 10.11949/j.issn.0438-1157.20181271
刘万强1,2,3(),陆海霞1,刘凤萍1,2,3,陈冠凡1,2,3,胡田1,岳明1,2,3,仇明华1,2,3()
收稿日期:
2018-10-29
修回日期:
2018-12-24
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
仇明华
作者简介:
<named-content content-type="corresp-name">刘万强</named-content>(1972—),男,博士,副教授,<email>wanqiangliu@hnust.edu.cn</email>|仇明华(1958—),男,教授,<email>mhqiu@hnust.edu.cn</email>
基金资助:
Wanqiang LIU1,2,3(),Haixia LU1,Fengping LIU1,2,3,Guanfan CHEN1,2,3,Tian HU1,Ming YUE1,2,3,Minghua QIU1,2,3()
Received:
2018-10-29
Revised:
2018-12-24
Online:
2019-04-05
Published:
2019-04-05
Contact:
Minghua QIU
摘要:
应用势能极小原理的有限元解法,求解每个醇类化合物分子结构碳-氧原子电负性差所引起的位移矢量,并与每个分子结构中各重原子Mulliken电荷矩阵作相应的运算,可得到分子电荷参量,结合分子结构固有频率(基频、总频)、温度参量,利用链烷醇、环烷醇、芳醇、叶绿醇等23个醇不同温度下的264个液体热导率实验数据,建立了电荷参量、分子结构固有频率和温度参数的3参量非线性一元醇类液体热导率估算模型。该模型对训练集的计算值和实验值的相关系数r > 0.98,标准误差s < 3.98 mW/(m·K),F检验值F > 2111;对外部预测集特庚醇、十四醇和2-辛醇在不同温度下的20个液体热导率进行估算,预测结果与实验数值的平均绝对误差为2.66 mW/(m·K),平均相对误差为1.74%。结果表明新方法明显优于Sastri 和Latini估算方法。
中图分类号:
刘万强, 陆海霞, 刘凤萍, 陈冠凡, 胡田, 岳明, 仇明华. 应用势能极小原理有限元解法的一元醇液体热导率估算[J]. 化工学报, 2019, 70(4): 1245-1254.
Wanqiang LIU, Haixia LU, Fengping LIU, Guanfan CHEN, Tian HU, Ming YUE, Minghua QIU. Estimation of thermal conductivity of liquid alcohols using finite element solution based on principle of minimum potential energy[J]. CIESC Journal, 2019, 70(4): 1245-1254.
Center number | Atomic type | Coordinate/? | ||
---|---|---|---|---|
x | y | z | ||
1 | C | ?1.3175 | ?0.5703 | ?0.0906 |
2 | C | ?0.0015 | 0.0269 | 0.3712 |
3 | C | 1.2114 | ?0.7640 | ?0.1046 |
4 | O | 0.0282 | 1.3656 | ?0.1646 |
表1 异丙醇分子结构优化构型中重原子的3D坐标
Table 1 Standard orientation coordinates of heavy atoms in isopropanol molecule
Center number | Atomic type | Coordinate/? | ||
---|---|---|---|---|
x | y | z | ||
1 | C | ?1.3175 | ?0.5703 | ?0.0906 |
2 | C | ?0.0015 | 0.0269 | 0.3712 |
3 | C | 1.2114 | ?0.7640 | ?0.1046 |
4 | O | 0.0282 | 1.3656 | ?0.1646 |
Center number | Atomic type | Mulliken charge |
---|---|---|
1 | C | 0.05463 |
2 | C | 0.292 |
3 | C | 0.01081 |
4 | O | ?0.35745 |
表2 异丙醇分子图中重原子的Mulliken电荷分布值
Table 2 Mulliken charges with hydrogens summed into heavy atoms in isopropanol molecule
Center number | Atomic type | Mulliken charge |
---|---|---|
1 | C | 0.05463 |
2 | C | 0.292 |
3 | C | 0.01081 |
4 | O | ?0.35745 |
Types | Elasticity coefficients | |||||
---|---|---|---|---|---|---|
E | G | A | Ix | Iy | J | |
C—C | 0.8322 | 0.3329 | 3.1416 | 0.7854 | 0.7854 | 1.5708 |
C—O | 0.8613 | 0.2871 | 2.7087 | 0.5839 | 0.5839 | 1.1678 |
表3 异丙醇分子中化学键空间杆元的弹性系数
Table 3 Elasticity coefficients of chemical bond space frame elements in alcohol molecules
Types | Elasticity coefficients | |||||
---|---|---|---|---|---|---|
E | G | A | Ix | Iy | J | |
C—C | 0.8322 | 0.3329 | 3.1416 | 0.7854 | 0.7854 | 1.5708 |
C—O | 0.8613 | 0.2871 | 2.7087 | 0.5839 | 0.5839 | 1.1678 |
No. | Compound | Q e | No. | Compound | Q e |
---|---|---|---|---|---|
1 | methanol | 0.0167 | 13 | n-octadecanol | 0.0474 |
2 | ethanol | 0.0311 | 14 | 2-hexanol | 0.0651 |
3 | n-proanol | 0.0488 | 15 | isoproanol | 0.0556 |
4 | n-butanol | 0.0322 | 16 | isobutanol | 0.0443 |
5 | n-pentanol | 0.0480 | 17 | 2-methyl-2-propanol | 0.0554 |
6 | n-hexanol | 0.0320 | 18 | 3-methyl-1-butanol | 0.0484 |
7 | n-heptanol | 0.0477 | 19 | 2-methyl-2-butanol | 0.0684 |
8 | n-octanol | 0.0474 | 20 | isoheptanol | 0.0477 |
9 | n-nonanol | 0.0318 | 21 | phytol | 0.0455 |
10 | n-decanol | 0.0319 | 22 | cyclohexanol | 0.0590 |
11 | n-undecylalcohol | 0.0475 | 23 | benzyl alcohol | 0.0465 |
12 | n-dodecanol | 0.0319 |
表4 单元醇类化合物电荷参量 Q e 的计算值
Table 4 Calculated values of charge parameter of monohydric alcohols
No. | Compound | Q e | No. | Compound | Q e |
---|---|---|---|---|---|
1 | methanol | 0.0167 | 13 | n-octadecanol | 0.0474 |
2 | ethanol | 0.0311 | 14 | 2-hexanol | 0.0651 |
3 | n-proanol | 0.0488 | 15 | isoproanol | 0.0556 |
4 | n-butanol | 0.0322 | 16 | isobutanol | 0.0443 |
5 | n-pentanol | 0.0480 | 17 | 2-methyl-2-propanol | 0.0554 |
6 | n-hexanol | 0.0320 | 18 | 3-methyl-1-butanol | 0.0484 |
7 | n-heptanol | 0.0477 | 19 | 2-methyl-2-butanol | 0.0684 |
8 | n-octanol | 0.0474 | 20 | isoheptanol | 0.0477 |
9 | n-nonanol | 0.0318 | 21 | phytol | 0.0455 |
10 | n-decanol | 0.0319 | 22 | cyclohexanol | 0.0590 |
11 | n-undecylalcohol | 0.0475 | 23 | benzyl alcohol | 0.0465 |
12 | n-dodecanol | 0.0319 |
No. | Compound | ω 0 | | No. | Compound | ω 0 | |
---|---|---|---|---|---|---|---|
1 | methanol | 0.0167 | 2.2879 | 13 | n-octadecanol | 0.0474 | 43.3410 |
2 | ethanol | 0.0311 | 4.7659 | 14 | 2-hexanol | 0.0651 | 14.4188 |
3 | n-proanol | 0.0488 | 7.1973 | 15 | isoproanol | 0.0556 | 7.1875 |
4 | n-butanol | 0.0322 | 9.6188 | 16 | isobutanol | 0.0443 | 9.5870 |
5 | n-pentanol | 0.0480 | 12.0349 | 17 | 2-methoxy-2-propanol | 0.0554 | 9.4219 |
6 | n-hexanol | 0.0320 | 14.4466 | 18 | 3-methoxy-1-butanol | 0.0484 | 11.5553 |
7 | n-heptanol | 0.0477 | 16.8574 | 19 | 2-methoxy-2-butanol | 0.0684 | 11.9710 |
8 | n-octanol | 0.0474 | 19.2668 | 20 | isoheptanol | 0.0477 | 16.8190 |
9 | n-nonanol | 0.0318 | 21.7656 | 21 | phytol | 0.0455 | 48.6498 |
10 | n-decanol | 0.0319 | 24.0841 | 22 | cyclohexanol | 0.0590 | 16.3980 |
11 | n-undecylalcohol | 0.0475 | 26.4919 | 23 | benzyl alcohol | 0.0465 | 24.1498 |
12 | n-dodecanol | 0.0319 | 28.8955 |
表5 醇分子结构固有频率中的基频和总频值
Table 5 Values of basic frequency and sum-frequency from natural frequencies of molecular structures
No. | Compound | ω 0 | | No. | Compound | ω 0 | |
---|---|---|---|---|---|---|---|
1 | methanol | 0.0167 | 2.2879 | 13 | n-octadecanol | 0.0474 | 43.3410 |
2 | ethanol | 0.0311 | 4.7659 | 14 | 2-hexanol | 0.0651 | 14.4188 |
3 | n-proanol | 0.0488 | 7.1973 | 15 | isoproanol | 0.0556 | 7.1875 |
4 | n-butanol | 0.0322 | 9.6188 | 16 | isobutanol | 0.0443 | 9.5870 |
5 | n-pentanol | 0.0480 | 12.0349 | 17 | 2-methoxy-2-propanol | 0.0554 | 9.4219 |
6 | n-hexanol | 0.0320 | 14.4466 | 18 | 3-methoxy-1-butanol | 0.0484 | 11.5553 |
7 | n-heptanol | 0.0477 | 16.8574 | 19 | 2-methoxy-2-butanol | 0.0684 | 11.9710 |
8 | n-octanol | 0.0474 | 19.2668 | 20 | isoheptanol | 0.0477 | 16.8190 |
9 | n-nonanol | 0.0318 | 21.7656 | 21 | phytol | 0.0455 | 48.6498 |
10 | n-decanol | 0.0319 | 24.0841 | 22 | cyclohexanol | 0.0590 | 16.3980 |
11 | n-undecylalcohol | 0.0475 | 26.4919 | 23 | benzyl alcohol | 0.0465 | 24.1498 |
12 | n-dodecanol | 0.0319 | 28.8955 |
No. | Compound | m | m-1 | No. | Compound | m | m-1 |
---|---|---|---|---|---|---|---|
1 | methanol | 1.26 | 0.26 | 13 | n-octadecanol | 0.97 | ?0.03 |
2 | ethanol | 1.06 | 0.06 | 14 | 2-hexanol | 1.02 | 0.02 |
3 | n-proanol | 1.14 | 0.14 | 15 | isoproanol | 1.01 | 0.01 |
4 | n-butanol | 1.04 | 0.04 | 16 | isobutanol | 0.96 | ?0.04 |
5 | n-pentanol | 1.07 | 0.07 | 17 | 2-methoxy-2-propanol | 0.95 | ?0.05 |
6 | n-hexanol | 1.02 | 0.02 | 18 | 3-methoxy-1-butanol | 0.97 | ?0.03 |
7 | n-heptanol | 1.06 | 0.06 | 19 | 2-methoxy-2-butanol | 0.95 | ?0.05 |
8 | n-octanol | 1.05 | 0.05 | 20 | isoheptanol | 0.98 | ?0.02 |
9 | n-nonanol | 1.02 | 0.02 | 21 | phytol | 0.99 | ?0.01 |
10 | n-decanol | 1.04 | 0.04 | 22 | cyclohexanol | 0.95 | ?0.05 |
11 | n-undecylalcohol | 1.08 | 0.08 | 23 | benzyl alcohol | 1.03 | 0.03 |
12 | n-dodecanol | 1.05 | 0.05 |
表6 电荷参量E的幂指数m优化值在温度范围内的平均值
Table 6 Average optimum values of charge parameter E to power exponent m in temperature range
No. | Compound | m | m-1 | No. | Compound | m | m-1 |
---|---|---|---|---|---|---|---|
1 | methanol | 1.26 | 0.26 | 13 | n-octadecanol | 0.97 | ?0.03 |
2 | ethanol | 1.06 | 0.06 | 14 | 2-hexanol | 1.02 | 0.02 |
3 | n-proanol | 1.14 | 0.14 | 15 | isoproanol | 1.01 | 0.01 |
4 | n-butanol | 1.04 | 0.04 | 16 | isobutanol | 0.96 | ?0.04 |
5 | n-pentanol | 1.07 | 0.07 | 17 | 2-methoxy-2-propanol | 0.95 | ?0.05 |
6 | n-hexanol | 1.02 | 0.02 | 18 | 3-methoxy-1-butanol | 0.97 | ?0.03 |
7 | n-heptanol | 1.06 | 0.06 | 19 | 2-methoxy-2-butanol | 0.95 | ?0.05 |
8 | n-octanol | 1.05 | 0.05 | 20 | isoheptanol | 0.98 | ?0.02 |
9 | n-nonanol | 1.02 | 0.02 | 21 | phytol | 0.99 | ?0.01 |
10 | n-decanol | 1.04 | 0.04 | 22 | cyclohexanol | 0.95 | ?0.05 |
11 | n-undecylalcohol | 1.08 | 0.08 | 23 | benzyl alcohol | 1.03 | 0.03 |
12 | n-dodecanol | 1.05 | 0.05 |
No. | Compound | n | (m-1)calc | m calc | No. | Compound | n | (m-1)calc | m calc |
---|---|---|---|---|---|---|---|---|---|
1 | methanol | 1 | 0.26 | 1.26 | 7 | n-heptanol | 7 | 0.04 | 1.04 |
2 | ethanol | 2 | 0.06 | 1.06 | 8 | n-octanol | 8 | 0.05 | 1.05 |
3 | n-proanol | 3 | 0.14 | 1.14 | 9 | n-nonanol | 9 | 0.02 | 1.02 |
4 | n-butanol | 4 | 0.03 | 1.03 | 10 | n-decanol | 10 | 0.04 | 1.04 |
5 | n-pentanol | 5 | 0.07 | 1.07 | 11 | n-dodecanol | 12 | 0.05 | 1.05 |
6 | n-hexanol | 6 | 0.03 | 1.03 | 12 | n-octadecanol | 18 | -0.03 | 0.97 |
表7 直链醇电荷参量E的幂指数m的计算值
Table 7 Calculated values of charge parameter E to power exponent m
No. | Compound | n | (m-1)calc | m calc | No. | Compound | n | (m-1)calc | m calc |
---|---|---|---|---|---|---|---|---|---|
1 | methanol | 1 | 0.26 | 1.26 | 7 | n-heptanol | 7 | 0.04 | 1.04 |
2 | ethanol | 2 | 0.06 | 1.06 | 8 | n-octanol | 8 | 0.05 | 1.05 |
3 | n-proanol | 3 | 0.14 | 1.14 | 9 | n-nonanol | 9 | 0.02 | 1.02 |
4 | n-butanol | 4 | 0.03 | 1.03 | 10 | n-decanol | 10 | 0.04 | 1.04 |
5 | n-pentanol | 5 | 0.07 | 1.07 | 11 | n-dodecanol | 12 | 0.05 | 1.05 |
6 | n-hexanol | 6 | 0.03 | 1.03 | 12 | n-octadecanol | 18 | -0.03 | 0.97 |
Group number | Isoproanol | Isobutanol | 2-Methoxy-2-propanol | 3-Methoxy -1-butanol | 2-Methoxy-2-butanol | Isoheptanol | Phytol | Cyclohexanol | Benzyl alcohol |
---|---|---|---|---|---|---|---|---|---|
| 2 | 2 | 3 | 2 | 3 | 2 | 5 | 0 | 0 |
| 0 | 1 | 0 | 2 | 1 | 4 | 10 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 | 4 | 0 | 0 |
n O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
n BO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
n H | 1 | 2 | 0 | 2 | 0 | 2 | 2 | 1 | 2 |
m?1 | 0.01 | ?0.04 | ?0.05 | ?0.03 | ?0.05 | ?0.02 | ?0.01 | ?0.05 | 0.04 |
表8 非直链醇分子结构的特征基团数与幂指数m计算值
Table 8 Characteristic group number and calculated values of power exponent m in no straight molecular structure
Group number | Isoproanol | Isobutanol | 2-Methoxy-2-propanol | 3-Methoxy -1-butanol | 2-Methoxy-2-butanol | Isoheptanol | Phytol | Cyclohexanol | Benzyl alcohol |
---|---|---|---|---|---|---|---|---|---|
| 2 | 2 | 3 | 2 | 3 | 2 | 5 | 0 | 0 |
| 0 | 1 | 0 | 2 | 1 | 4 | 10 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 | 4 | 0 | 0 |
n O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
n BO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
n H | 1 | 2 | 0 | 2 | 0 | 2 | 2 | 1 | 2 |
m?1 | 0.01 | ?0.04 | ?0.05 | ?0.03 | ?0.05 | ?0.02 | ?0.01 | ?0.05 | 0.04 |
No. | Compound | Temperature range/K | n | ω 0 | | | MAD×103 /(W/(m·K)) | MRD/% |
---|---|---|---|---|---|---|---|---|
1 | methanol | 290—320 | 3 | 0.1712 | 0.0382 | 0.01671.30 T | 4.35 | 2.14 |
2 | ethanol | 290—340 | 4 | 0.1248 | 0.1482 | 0.03111.06 T | 3.25 | 2.02 |
3 | n-proanol | 273—353 | 5 | 0.0964 | 0.3512 | 0.04881.15 T | 1.98 | 1.31 |
4 | n-butanol | 193—380 | 24 | 0.0762 | 0.3097 | 0.03220.99 T | 3.52 | 2.46 |
5 | n-pentanol | 290—400 | 7 | 0.0585 | 0.5777 | 0.04801.08 T | 1.67 | 1.21 |
6 | n-hexanol | 240—420 | 10 | 0.0470 | 0.4623 | 0.03201.02 T | 3.77 | 2.68 |
7 | n-heptanol | 250—480 | 13 | 0.0374 | 0.8041 | 0.04771.04 T | 3.25 | 2.24 |
8 | n-octanol | 280—520 | 13 | 0.0310 | 0.9132 | 0.04741.05 T | 3.21 | 2.48 |
9 | n-nonanol | 280—460 | 10 | 0.0255 | 0.6921 | 0.03181.02 T | 4.34 | 3.12 |
10 | n-decanol | 290—423 | 14 | 0.0184 | 0.7683 | 0.03191.04 T | 3.04 | 2.05 |
11 | n-undecylalcohol | 300—440 | 8 | 0.0184 | 1.2584 | 0.04751.09 T | 1.72 | 1.10 |
12 | n-dodecanol | 310—440 | 8 | 0.0159 | 0.9215 | 0.03191.05 T | 3.10 | 2.07 |
13 | n-octadecanol | 337—440 | 15 | 0.0077 | 2.0544 | 0.04740.97 T | 1.61 | 0.93 |
14 | 2-hexanol | 200—370 | 10 | 0.0517 | 0.9387 | 0.06511.02 T | 3.91 | 2.87 |
15 | isoproanol | 190—470 | 21 | 0.1192 | 0.3996 | 0.05561.01 T | 2.68 | 2.12 |
16 | isobutanol | 290—470 | 22 | 0.0825 | 0.4247 | 0.04430.96 T | 3.85 | 3.75 |
17 | 2-methoxy-2-propanol | 310—400 | 9 | 0.0834 | 0.5220 | 0.05540.95 T | 4.70 | 4.34 |
18 | 3-methoxy-1-butanol | 160—400 | 13 | 0.0616 | 0.5593 | 0.04840.97 T | 4.63 | 3.47 |
19 | 2-methoxy-2-butanol | 280—360 | 6 | 0.0792 | 0.7793 | 0.03111.06 T | 4.40 | 3.88 |
20 | isoheptanol | 230—430 | 21 | 0.0412 | 0.8023 | 0.04770.98 T | 2.96 | 2.27 |
21 | phytol | 250—310 | 7 | 0.0084 | 2.2136 | 0.04550.99 T | 1.58 | 0.78 |
22 | cyclohexanol | 300—360 | 7 | 0.0942 | 0.9675 | 0.05900.95 T | 1.76 | 1.32 |
23 | benzyl alcohol | 290—420 | 14 | 0.0698 | 0.9370 | 0.04651.04 T | 3.16 | 2.03 |
表9 23个醇分子的温度范围、参量值、计算值与实验值[4]的平均绝对偏差和相对绝对偏差
Table 9 Temperature range, parameter, mean absolute deviation and relative deviation between experiment[4] and calculated values
No. | Compound | Temperature range/K | n | ω 0 | | | MAD×103 /(W/(m·K)) | MRD/% |
---|---|---|---|---|---|---|---|---|
1 | methanol | 290—320 | 3 | 0.1712 | 0.0382 | 0.01671.30 T | 4.35 | 2.14 |
2 | ethanol | 290—340 | 4 | 0.1248 | 0.1482 | 0.03111.06 T | 3.25 | 2.02 |
3 | n-proanol | 273—353 | 5 | 0.0964 | 0.3512 | 0.04881.15 T | 1.98 | 1.31 |
4 | n-butanol | 193—380 | 24 | 0.0762 | 0.3097 | 0.03220.99 T | 3.52 | 2.46 |
5 | n-pentanol | 290—400 | 7 | 0.0585 | 0.5777 | 0.04801.08 T | 1.67 | 1.21 |
6 | n-hexanol | 240—420 | 10 | 0.0470 | 0.4623 | 0.03201.02 T | 3.77 | 2.68 |
7 | n-heptanol | 250—480 | 13 | 0.0374 | 0.8041 | 0.04771.04 T | 3.25 | 2.24 |
8 | n-octanol | 280—520 | 13 | 0.0310 | 0.9132 | 0.04741.05 T | 3.21 | 2.48 |
9 | n-nonanol | 280—460 | 10 | 0.0255 | 0.6921 | 0.03181.02 T | 4.34 | 3.12 |
10 | n-decanol | 290—423 | 14 | 0.0184 | 0.7683 | 0.03191.04 T | 3.04 | 2.05 |
11 | n-undecylalcohol | 300—440 | 8 | 0.0184 | 1.2584 | 0.04751.09 T | 1.72 | 1.10 |
12 | n-dodecanol | 310—440 | 8 | 0.0159 | 0.9215 | 0.03191.05 T | 3.10 | 2.07 |
13 | n-octadecanol | 337—440 | 15 | 0.0077 | 2.0544 | 0.04740.97 T | 1.61 | 0.93 |
14 | 2-hexanol | 200—370 | 10 | 0.0517 | 0.9387 | 0.06511.02 T | 3.91 | 2.87 |
15 | isoproanol | 190—470 | 21 | 0.1192 | 0.3996 | 0.05561.01 T | 2.68 | 2.12 |
16 | isobutanol | 290—470 | 22 | 0.0825 | 0.4247 | 0.04430.96 T | 3.85 | 3.75 |
17 | 2-methoxy-2-propanol | 310—400 | 9 | 0.0834 | 0.5220 | 0.05540.95 T | 4.70 | 4.34 |
18 | 3-methoxy-1-butanol | 160—400 | 13 | 0.0616 | 0.5593 | 0.04840.97 T | 4.63 | 3.47 |
19 | 2-methoxy-2-butanol | 280—360 | 6 | 0.0792 | 0.7793 | 0.03111.06 T | 4.40 | 3.88 |
20 | isoheptanol | 230—430 | 21 | 0.0412 | 0.8023 | 0.04770.98 T | 2.96 | 2.27 |
21 | phytol | 250—310 | 7 | 0.0084 | 2.2136 | 0.04550.99 T | 1.58 | 0.78 |
22 | cyclohexanol | 300—360 | 7 | 0.0942 | 0.9675 | 0.05900.95 T | 1.76 | 1.32 |
23 | benzyl alcohol | 290—420 | 14 | 0.0698 | 0.9370 | 0.04651.04 T | 3.16 | 2.03 |
Compound | T/K | λ/(mW/(m·K)) | ω 0 | | TQ e m | Δ/% | ||
---|---|---|---|---|---|---|---|---|
This work | Sastri[ | Latini[ | ||||||
tert-heptanol | 310 | 139 | 0.0483 | 1.3046 | 22.3098 | ?1.13 | — | — |
320 | 136 | 0.0483 | 1.306 | 23.0295 | ?1.25 | — | — | |
330 | 133 | 0.0483 | 1.3046 | 23.7491 | ?0.92 | — | — | |
340 | 130 | 0.0483 | 1.3046 | 24.4688 | ?0.46 | — | — | |
2-octanol | 300 | 138 | 0.0324 | 1.0050 | 16.6126 | 1.74 | 20.76 | 0.10 |
320 | 135 | 0.0324 | 1.0050 | 17.7201 | 0.95 | 25.30 | ?1.12 | |
340 | 132 | 0.0324 | 1.0050 | 18.8276 | 0.12 | 30.53 | ?2.37 | |
360 | 129 | 0.0324 | 1.0050 | 19.9352 | ?0.74 | 36.67 | ?3.67 | |
n-tetradecanol | 340 | 166 | 0.0039 | 0.5680 | 4.0452 | ?4.23 | ?12.37 | ?22.37 |
350 | 164 | 0.0039 | 0.5680 | 4.1642 | ?3.33 | ?10.31 | ?22.82 | |
360 | 163 | 0.0039 | 0.5680 | 4.2832 | ?3.01 | ?8.60 | ?23.76 | |
370 | 161 | 0.0039 | 0.5680 | 4.4021 | ?2.08 | ?6.13 | ?24.25 | |
380 | 160 | 0.0039 | 0.5680 | 4.5211 | ?1.74 | ?3.97 | ?25.22 | |
390 | 158 | 0.0039 | 0.5680 | 4.6401 | ?0.78 | ?0.87 | ?25.75 | |
400 | 156 | 0.0039 | 0.5680 | 4.7591 | 0.21 | 2.69 | ?26.30 | |
410 | 154 | 0.0039 | 0.5680 | 4.8780 | 1.23 | 6.85 | ?26.88 | |
420 | 153 | 0.0039 | 0.5680 | 4.9970 | 1.60 | ?24.81 | ?27.97 | |
430 | 151 | 0.0039 | 0.5680 | 5.1160 | 2.65 | ?23.97 | ?28.61 | |
440 | 150 | 0.0039 | 0.5680 | 5.2350 | 3.04 | ?23.63 | ?29.77 | |
450 | 148 | 0.0039 | 0.5680 | 5.3540 | 4.13 | ?22.76 | ?30.51 |
表10 3个醇类化合物液体热导率预测值比较
Table 10 Comparison of predicted values of liquid thermal conductivity of 3 alcohols compounds
Compound | T/K | λ/(mW/(m·K)) | ω 0 | | TQ e m | Δ/% | ||
---|---|---|---|---|---|---|---|---|
This work | Sastri[ | Latini[ | ||||||
tert-heptanol | 310 | 139 | 0.0483 | 1.3046 | 22.3098 | ?1.13 | — | — |
320 | 136 | 0.0483 | 1.306 | 23.0295 | ?1.25 | — | — | |
330 | 133 | 0.0483 | 1.3046 | 23.7491 | ?0.92 | — | — | |
340 | 130 | 0.0483 | 1.3046 | 24.4688 | ?0.46 | — | — | |
2-octanol | 300 | 138 | 0.0324 | 1.0050 | 16.6126 | 1.74 | 20.76 | 0.10 |
320 | 135 | 0.0324 | 1.0050 | 17.7201 | 0.95 | 25.30 | ?1.12 | |
340 | 132 | 0.0324 | 1.0050 | 18.8276 | 0.12 | 30.53 | ?2.37 | |
360 | 129 | 0.0324 | 1.0050 | 19.9352 | ?0.74 | 36.67 | ?3.67 | |
n-tetradecanol | 340 | 166 | 0.0039 | 0.5680 | 4.0452 | ?4.23 | ?12.37 | ?22.37 |
350 | 164 | 0.0039 | 0.5680 | 4.1642 | ?3.33 | ?10.31 | ?22.82 | |
360 | 163 | 0.0039 | 0.5680 | 4.2832 | ?3.01 | ?8.60 | ?23.76 | |
370 | 161 | 0.0039 | 0.5680 | 4.4021 | ?2.08 | ?6.13 | ?24.25 | |
380 | 160 | 0.0039 | 0.5680 | 4.5211 | ?1.74 | ?3.97 | ?25.22 | |
390 | 158 | 0.0039 | 0.5680 | 4.6401 | ?0.78 | ?0.87 | ?25.75 | |
400 | 156 | 0.0039 | 0.5680 | 4.7591 | 0.21 | 2.69 | ?26.30 | |
410 | 154 | 0.0039 | 0.5680 | 4.8780 | 1.23 | 6.85 | ?26.88 | |
420 | 153 | 0.0039 | 0.5680 | 4.9970 | 1.60 | ?24.81 | ?27.97 | |
430 | 151 | 0.0039 | 0.5680 | 5.1160 | 2.65 | ?23.97 | ?28.61 | |
440 | 150 | 0.0039 | 0.5680 | 5.2350 | 3.04 | ?23.63 | ?29.77 | |
450 | 148 | 0.0039 | 0.5680 | 5.3540 | 4.13 | ?22.76 | ?30.51 |
1 | Shearer E C . Physical properties of primary alcohols: an experience in physical chemistry[J]. J. Chem. Educ., 1974, 51(2): 140-148. |
2 | Mccullough B T . Analysis of alcohols[J]. J. Chem. Educ., 1984, 61(1): 68-76. |
3 | Jacobse L , Vink S O , Wijngaarden S , et al . Heterogeneous catalytic oxidation of simple alcohols by transition metals[J]. J. Chem. Educ., 2017, 94(9): 1285-1287. |
4 | Vargaftik N B . Handbook of Thermal Conductivity of Liquids and Gases[M]. Boca Raton FL: CRC Press, 1994: 358. |
5 | Lide D R . CRC Handbook of Chemistry and Physics[M]. Boca Raton FL: CRC Press, 2010: 2766. |
6 | Gharagheizi F , Eslamimanesh A , Sattari M , et al . Evaluation of thermal conductivity of gases at atmospheric pressure through a corresponding states method[J]. Ind. Eng. Chem. Res., 2012, 51(9): 3844-3849. |
7 | Baroncini C , Filippo P , Latini G , et al . Organic liquid thermal conductivity: a prediction method in the reduced temperature range 0.3 to 0.8[J]. Int. J. Thermophys, 1981, 2(1): 21-38. |
8 | Klaas D M , Viswanath D S . A correlation for the prediction of thermal conductivity of liquids[J]. Ind. Eng. Chem. Res., 1998, 37(5): 2064-2068. |
9 | Rodenbush C M , Viswanath D S , Hsieh F . A group contribution method for the prediction of thermal conductivity of liquids and its application to the Prandtl number for vegetable oils[J]. Ind. Eng. Chem. Res., 1999, 38(11): 4513-4519. |
10 | Krauss R , Stephan K . Thermal conductivity of refrigerants in a wide range of temperature and pressure[J]. J. Phys. Chem. Ref. Data, 1989, 18(1): 43-76. |
11 | Müller K , Arlt W . An estimation method for thermal conductivity in the fluid phase[J]. J. Chem. Eng. Data, 2014, 59(4): 946–953. |
12 | 张玉英, 张克武 . 分子热力学性质手册——计算方法与最新实验数据[M]. 北京: 化学工业出版社, 2009: 205-238. |
Zhang Y Y , Zhang K W . Handbook for Thermodynamics Properties of Molecules: Calculation Method and Latest Experimental Data[M]. Beijing: Chemical Industry Press, 2009: 205-238. | |
13 | 马沛生 . 有机化合物实验物性数据手册——含碳、氢、氧、卤部分[M]. 北京: 化学工业出版社, 2006: 594-600. |
Ma P S . Handbook for Exprimental Properties Data of Organic Compounds: Section of Carbon, Hydrogen, Oxygen and Halogens[M]. Beijing: Chemical Industry Press, 2006: 594-600. | |
14 | Poling B E , Prausnitz J M , Oconnell J P . The Properties of Gases and Liquids[M]. Boston: McGraw-Hill Companies Inc., 2001: 594-600. |
15 | França J M P , Lourenço M J V , Murshed S M S , et al . Thermal conductivity of ionic liquids and ionanofluids and their feasibility as heat transfer fluids[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6516-6529. |
16 | Liu W Q , Lu H X , Cao C Z , et al . An improved quantitative structure property relationship model for predicting thermal conductivity of liquid aliphatic alcohols[J]. J.Chem. Eng. Data, 2018, 63(12): 4735–4740. |
17 | França J M P , Lourenço M J V , Murshed S M S , et al . Thermal conductivity of ionic liquids and ionanofluids and their feasibility as heat transfer fluids[J]. Ind. Eng. Chem. Res., 2018, 57(18): 6516-6529. |
18 | Werner M , Baars A , Eder C , et al . Thermal conductivity and density of plant oils under high pressure[J]. Ind. Chem. Eng. Data, 2008, 53(7): 1444-1452. |
19 | 仇明华, 刘万强, 刘凤萍, 等 . 用分子结构有限元分析方法估算多类芳烃的液体热导率[J]. 过程工程学报, 2018, 18(1): 196-201. |
Qiu M H , Liu W Q , Liu F P , et al . Estimation of thermal conductivity of liquid aromatic hydrocarbons using finite element analysis method in molecular structure[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 196-201. | |
20 | 仇明华, 刘万强, 岳明, 等 . 分子结构力学有限元分析方法估算多元醇液体热导率[J]. 分子科学学报, 2018, 34(1): 1-8. |
Qiu M H , Liu W Q , Yue M , et al . Estimation of thermal conductivity of Polyols in liquid using finite element analysis in molecular structural mechanics[J]. Journal of Molecular Science, 2018, 34(1): 1-8. | |
21 | 仇明华, 刘万强, 陈冠凡, 等 . 用振动力学有限元分析方法估算多类烃的液体热导率[J]. 化工学报, 2016, 67(7): 2672-2678. |
Qiu M H , Liu W Q , Chen G F , et al . Conductivity estimates of liquid hydrocarbons by finite element analysis in vibration mechanics[J]. CIESC Journal, 2016, 67(7): 2672-2678. | |
22 | 仇明华, 谢文林, 刘凤萍, 等 . 一种磺酰胺类碳酸酐酶Ⅱ抑制剂3D-QSAR分析新方法[J]. 化学学报, 2010, 68(24): 2581-2589. |
Qiu M H , Xie W L , Liu F P , et al . A new method of 3D-QSAR anlysis for carbonic anhydrase Ⅱ inhibitors[J]. Acta Chimica Sinica, 2010, 68(24): 2581-2589. | |
23 | 赵经文, 王宏钰 . 结构有限元分析[M]. 北京: 科学出版社, 2002. |
Zhao J W , Wang H Y . Finite Element Analysis for Structures[M]. Beijing: Science Press, 2002. | |
24 | 周昌玉, 贺小华 . 有限元分析的基本方法及工程应用[M]. 北京: 化学工业出版社, 2006. |
Zhou C Y , He X H . Basic Method of Finite Element Analysis and Application in Engineering[M]. Beijing: Chemical Industry Press, 2006. | |
25 | 李时丰 . 原子参数与原子性质[M]. 长沙: 湖南科学出版社, 1982. |
Li S F . Atomic Parameter and Element Properties[M]. Changsha: Hunan Science Press, 1982. | |
26 | 林梦海 . 量子化学计算方法与应用[M]. 北京: 科学出版社, 2004. |
Lin M H . Quantum Chemistry Computing Method and Application[M]. Beijing: Science Press, 2004. | |
27 | Devendra M E A . The X—C···Y (X = O/F, Y = O/S/F/Cl/Br/N/P) “carbon bond” and hydrophobic interactions[J]. Physical Chemistry Chemical Physics: PCCP, 2013,15(34): 14377-14383. |
28 | Wang B , Yi H , Xu K , et al . Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models[J]. Journal of Thermal Analysis & Calorimetry, 2017,128(1): 399-406. |
29 | 刘延柱 . 弹性细杆的非线性力学——DNA力学模型的理论基础[M]. 北京: 清华大学出版社, 2006: 15-18. |
Liu Y Z . Nonlinear Mechanics of Thin Elastic Rod: Theoretical Basis of Mechanical Model of DNA[M]. Beijing: Tsinghua University Press, 2006: 15-18. | |
30 | Kattan P I . MATLAB Guide to Finite Elements[M]. Heidelberg: Springer-Verlag, 2003. |
31 | 方同, 薛璞 . 振动理论及应用[M]. 西安: 西北工业大学出版社, 2002: 99-125. |
Fang T , Xue P . Vibration Mechanics and Application[M]. Xi'an: NWPU Press, 2002: 99-125. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[3] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[4] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[5] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[6] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[7] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[8] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[9] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[10] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[11] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[12] | 何金峰, 李秀珍, 寇建耀, 陶庭杰, 余灿, 刘欢, 陈永元, 赵豪健, 江大好, 李小年. 乙醇制高级醇有序介孔氧化铝负载铜基催化剂研究[J]. 化工学报, 2023, 74(3): 1082-1091. |
[13] | 项望凯, 刘园园, 郑映, 潘鹏举. 基于熔融/固相缩聚制备中高分子量聚乙醇酸[J]. 化工学报, 2023, 74(2): 933-940. |
[14] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[15] | 沈辰阳, 孙楷航, 张月萍, 刘昌俊. 二氧化碳加氢合成甲醇氧化铟及其负载金属催化剂研究进展[J]. 化工学报, 2023, 74(1): 145-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||