化工学报 ›› 2019, Vol. 70 ›› Issue (8): 2864-2875.DOI: 10.11949/0438-1157.20190198
收稿日期:
2019-03-06
修回日期:
2019-05-02
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
高宁博
作者简介:
王凤超(1992—),女,博士研究生,基金资助:
Fengchao WANG(),Ningbo GAO(),Cui QUAN
Received:
2019-03-06
Revised:
2019-05-02
Online:
2019-08-05
Published:
2019-08-05
Contact:
Ningbo GAO
摘要:
针对近年废轮胎热解技术研究进展进行总结,主要讨论了废轮胎的低温真空热解、共热解、催化热解等热解技术,阐述了热解设备、温度、压力、催化剂等因素对热解炭黑的影响及特点,对比了热解炭黑不同改性提质方法的特点,对热解炭黑资源化应用现状等进行讨论阐述。
中图分类号:
王凤超, 高宁博, 全翠. 废轮胎热解技术及炭黑产物的品质提升与应用研究进展[J]. 化工学报, 2019, 70(8): 2864-2875.
Fengchao WANG, Ningbo GAO, Cui QUAN. Progress on pyrolysis technology of waste tire and upgrade and recycle utilization of carbon black product[J]. CIESC Journal, 2019, 70(8): 2864-2875.
1 | Kim J K , Lee S H . New technology of crumb rubber compounding for recycling of waste tires[J]. Journal of Applied Polymer Science, 2000, 78(8): 1573-1577. |
2 | Choi G G , Jung S H , Oh S J , et al . Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char[J]. Fuel Processing Technology, 2014, 123: 57-64. |
3 | Donatelli A , Iovane P , Molino A . High energy syngas production by waste tyres steam gasification in a rotary kiln pilot plant. Experimental and numerical investigations[J]. Fuel, 2010, 89(10): 2721-2728. |
4 | Martinez J D , Puy N , Murillo R , et al . Waste tyre pyrolysis —a review[J]. Renewable & Sustainable Energy Reviews, 2013, 23: 179-213. |
5 | Xu L , Jiang Y , Qiu R . Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition[J]. Bioresource Technology, 2018, 247: 545-552. |
6 | 曹青, 刘岗, 鲍卫仁, 等 . 生物质与废轮胎共热解及催化对热解油的影响[J]. 化工学报, 2007, 58(5): 1283-1289. |
Cao Q , Liu G , Bao W R , et al . Influence of co-pyrolysis and catalysis of biomass with waste tire on pyrolytic oil properties[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(5): 1283-1289. | |
7 | Danon B , de Villiers A , Gorgens J F . Elucidation of the different devolatilisation zones of tyre rubber pyrolysis using TGA-MS[J]. Thermochimica Acta, 2015, 614: 59-61. |
8 | Xu F F , Wang B , Yang D , et al . TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire[J]. Energy Conversion and Management, 2018, 175: 288-297. |
9 | 刘海兵, 付兴民, 柳树成, 等 . 初温和终温对废轮胎热解产物分布影响[J]. 环境工程, 2012, 30(5): 144-148. |
Liu H B , Fu X M , Liu S C , et al . Influence of the initial and the finial temperature on the pyrolytic product distribution of scrap tires [J]. Environmental Engineering, 2012, 30(5): 144-148. | |
10 | Christian R H P , Dominique B . The role of extractives during vacuum pyrolysis of wood[J]. Journal of Applied Polymer Science, 2010, 41(1/2): 337-348. |
11 | Lopez G , Olazar M , Aguado R , et al . Vacuum pyrolysis of waste tires by continuously feeding into a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 8990-8997. |
12 | 吴丹, 周洁, 俞天明, 等 . 废轮胎热解衍生油非加氢脱硫[J]. 环境工程学报, 2013, 7(8): 3153-3157. |
Wu D , Zhou J , Yu T M , et al . Non-hydrogenation desulfurization of derived pyrolytic oil from scrap tires[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3153-3157. | |
13 | Yang J , Gupta M , Roy X , et al . Study of tire particle mixing in a moving and stirred bed vacuum pyrolysis reactor[J]. Canadian Journal of Chemical Engineering, 2004, 82(3): 510-519. |
14 | Hidalgo-Herrador J M , Vrablik A , Cerny R , et al . Effect of waste tires addition on a low-temperature hydrovisbreaking process of vacuum residue[J]. Chemical Papers, 2017, 71(6): 1175-1182. |
15 | Falciglia P P , Roccaro P , Bonanno L , et al . A review on the microwave heating as a sustainable technique for environmental remediation/detoxification applications[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 147-170. |
16 | Bartoli M , Rosi L , Giovannelli A , et al . Microwave assisted pyrolysis of crop residues from Vitis vinifera [J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 305-313. |
17 | Song P , Wu X Y , Wang S F . Effect of styrene butadiene rubber on the light pyrolysis of the natural rubber[J]. Polymer Degradation and Stability, 2018, 147: 168-176. |
18 | Song Z L , Yan Y C , Xie M M , et al . Effect of steel wires on the microwave pyrolysis of tire powders[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13443-13453. |
19 | Song Z L , Yang Y Q , Sun J , et al . Effect of power level on the microwave pyrolysis of tire powder[J]. Energy, 2017, 127: 571-580. |
20 | Song Z L , Yang Y Q , Zhou L , et al . Gaseous products evolution during microwave pyrolysis of tire powders[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18209-18215. |
21 | Undri A , Meini S , Rosi L , et al . Microwave pyrolysis of polymeric materials: waste tires treatment and characterization of the value-added products[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 149-158. |
22 | Undri A , Rosi L , Frediani M , et al . Upgraded fuel from microwave assisted pyrolysis of waste tire[J]. Fuel, 2014, 115: 600-608. |
23 | Pinto F , Miranda M , Costa P . Production of liquid hydrocarbons from rice crop wastes mixtures by co-pyrolysis and co-hydropyrolysis[J]. Fuel, 2016, 174: 153-163. |
24 | Murena F , Garufi E , Smith R B , et al . Hydrogenative pyrolysis of waste tires[J]. Journal of Hazardous Materials, 1996, 50(1): 79-98. |
25 | Mastral A M , Murillo R , Callen M S , et al . Influence of process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed reactor[J]. Energy & Fuels, 2000, 14(4): 739-744. |
26 | Fang S W , Gu W L , Dai M Q , et al . A study on microwave-assisted fast co-pyrolysis of chlorella and tire in the N2 and CO2 atmospheres[J]. Bioresource Technology, 2018, 250: 821-827. |
27 | 李沙沙, 刘杰飞, 张莉, 等 . 废轮胎与煤的共热解特性[J]. 煤炭转化, 2016, 39(3): 39-43. |
Li S S , Liu J F , Zhang L , et al . Co-pyrolysis characteristics of waste tire and coal[J]. Coal Conversion, 2016, 39(3): 39-43. | |
28 | 虞宇翔, 王文亮, 常建民, 等 . 生物质与废轮胎共热解液化技术研究现状[J]. 化工进展, 2013, 32(S1): 70-75. |
Yu Y X , Wang W L , Chang J M , et al . Research status of the co-pyrolysis liquefaction of biomass and waste tire[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 70-75. | |
29 | Shah S A Y , Zeeshan M , Farooq M Z , et al . Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality[J]. Renewable Energy, 2019, 130: 238-244. |
30 | Wang L Z , Chai M Y , Liu R H , et al . Synergetic effects during co-pyrolysis of biomass and waste tire: a study on product distribution and reaction kinetics[J]. Bioresource Technology, 2018, 268: 363-370. |
31 | Onay O , Koca H . Determination of synergetic effect in co-pyrolysis of lignite and waste tyre[J]. Fuel, 2015, 150: 169-174. |
32 | Bicakova O , Straka P . Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production[J]. Energy Conversion and Management, 2016, 116: 203-213. |
33 | Ozonoh M , Aniokete T C , Oboirien B O , et al . Techno-economic analysis of electricity and heat production by co-gasification of coal, biomass and waste tyre in South Africa[J]. Journal of Cleaner Production, 2018, 201: 192-206. |
34 | Ahmed N , Zeeshan M , Iqbal N , et al . Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis[J]. Journal of Cleaner Production, 2018, 196: 927-934. |
35 | 吴凯, 朱锦娇, 朱跃钊, 等 . 废轮胎与生物质共热解特性研究[J]. 林产化学与工业, 2018, 38(5): 53-60. |
Wu K , Zhu J J , Zhu Y Z , et al . Co-pyrolysis process of waste tire and biomass[J]. Chemistry and Industry of Forest Products, 2018, 38(5): 53-60. | |
36 | Arabiourrutia M , Olazar M , Aguado R , et al . HZSM-5 and HY zeolite catalyst performance in the pyrolysis of tires in a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7600-7609. |
37 | 丁宽, 仲兆平, 张波, 等 . 纯化凹凸棒土催化废轮胎热解制取高值液态产物[J]. 浙江大学学报(工学版), 2014, 48(11): 2053-2060. |
Ding K , Zhong Z P , Zhang B , et al . Catalytic pyrolysis of scrap tire to produce valuable liquid products using purified attapulgite[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(11): 2053-2060. | |
38 | Kordoghli S , Paraschiv M , Kuncser R , et al . Catalysts influence on thermochemical decomposition of waste tires[J]. Environmental Progress & Sustainable Energy, 2017, 36(5): 1560-1567. |
39 | Dong R K , Zhao M Z . Research on the pyrolysis process of crumb tire rubber in waste cooking oil[J]. Renewable Energy, 2018, 125: 557-567. |
40 | 常赵刚, 王利斌, 裴贤丰, 等 . 蒙东褐煤固定床热解破碎粉化特性研究[J]. 煤炭科学技术, 2017, (11): 215-221. |
Chang Z G , Wang L B , Pei X F , et al . Study on pulverization characteristics of east Inner Mongolia lignite during pyrolysis in a fixed bed [J]. Coal Science and Technology, 2017, 45(11): 215-221. | |
41 | Kordoghli S , Khiari B , Paraschiv M , et al . Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor[J]. Waste Management, 2017, 67: 288-297. |
42 | Acevedo B , Barriocanal C , Alvarez R . Pyrolysis of blends of coal and tyre wastes in a fixed bed reactor and a rotary oven[J]. Fuel, 2013, 113: 817-825. |
43 | Sahoo B . The effect of parameters on the performance of a fluidized bed reactor and gasifier[J]. Chemical Physics Letters, 2011, 278(s 1-3): 26-30. |
44 | Ayanoğlu A , Yumrutaş R . Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels[J]. Energy Conversion and Management, 2016, 111: 261-270. |
45 | Kaewluan S , Pipatmanomai S . Gasification of high moisture rubber woodchip with rubber waste in a bubbling fluidized bed[J]. Fuel Processing Technology, 2011, 92(3): 671-677. |
46 | Karatas H , Olgun H , Engin B , et al . Experimental results of gasification of waste tire with air in a bubbling fluidized bed gasifier[J]. Fuel, 2013, 105: 566-571. |
47 | Amutio M , Lopez G , Alvarez J , et al . Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor[J]. Bioresource Technology, 2015, 194: 225-232. |
48 | Lopez G , Olazar M , Aguado R , et al . Continuous pyrolysis of waste tyres in a conical spouted bed reactor[J]. Fuel, 2010, 89(8): 1946-1952. |
49 | Alhassan Y , Kumar N , Bugaje I M . Catalytic upgrading of waste tire pyrolysis oil via supercritical esterification with deep eutectic solvents (green solvents and catalysts)[J]. Journal of the Energy Institute, 2016, 89(4): 683-693. |
50 | Nisar J , Ali G , Ullah N , et al . Pyrolysis of waste tire rubber: influence of temperature on pyrolysates yield[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 3469-3473. |
51 | 张波, 仲兆平 . 废轮胎热解炭吸附脱汞实验研究[J]. 东南大学学报(自然科学版), 2017, 47(3): 521-527. |
Zhang B , Zhong Z P . Research on mercury adsorption by pyrolytic char of waste tires[J]. Journal of Southeast University ( Natural Science Edition), 2017, 47(3): 521-527. | |
52 | Roy C , Pakdel H , Brouillard D . The role of extractives during vacuum pyrolysis of wood[J]. Journal of Applied Polymer Science, 2010, 41(1/2): 337-348. |
53 | Luo S Y , Feng Y . The production of fuel oil and combustible gas by catalytic pyrolysis of waste tire using waste heat of blast-furnace slag[J]. Energy Conversion and Management, 2017, 136: 27-35. |
54 | Zhang Y S , Tao Y W , Huang J , et al . Influence of silica-alumina support ratio on H2 production and catalyst carbon deposition from the Ni-catalytic pyrolysis/reforming of waste tyres[J]. Waste Management & Research, 2017, 35(10): 1045-1054. |
55 | Wang M Y , Zhang L , Li A M , et al . Comparative pyrolysis behaviors of tire tread and side wall from waste tire and characterization of the resulting chars[J]. Journal of Environmental Management, 2019, 232: 364-371. |
56 | 胡国华, 张一帆, 张立群 . 废橡胶裂解研究进展[J]. 高分子通报, 2017, (12): 1-13. |
Hu G H , Zhang Y F , Zhang L Q . Progress of waste rubber in the application of pyrolysis[J]. Polymer Bulletin, 2017, (12): 1-13. | |
57 | 沈伯雄, 鲁锋, 朱国营, 等 . 废轮胎热解炭黑及其改性后的特性研究[J]. 环境工程学报, 2010, 4(7): 1615-1618. |
Shen B X , Lu F , Zhu G Y , et al . Characterization of modified and original carbon blacks from pyrolysis of scrap tires [J]. Chinese Journal of Environmental Engineering, 2010, 4(7): 1615-1618. | |
58 | 刘俊, 陈云嫩, 聂锦霞 . 废轮胎热解炭黑制备活性炭及处理染料废水[J]. 中国环境科学, 2018, 38(10): 3795-3800. |
Liu J , Chen Y N , Nie J X . Preparation of activated carbon from waste tire pyrolysis carbon black and its treatment of dyeing waste water[J]. China Environmental Science, 2018, 38(10): 3795-3800. | |
59 | Zhang X , Li H X , Cao Q , et al . Upgrading pyrolytic residue from waste tires to commercial carbon black[J]. Waste Management & Research, 2018, 36(5): 436-444. |
60 | Heras F , Jimenez-Cordero D , Gilarranz M A , et al . Activation of waste tire char by cyclic liquid-phase oxidation[J]. Fuel Processing Technology, 2014, 127: 157-162. |
61 | Betancur M , Martinez J D , Murillo R . Production of activated carbon by waste tire thermochemical degradation with CO2 [J]. Journal of Hazardous Materials, 2009, 168(2/3): 882-887. |
62 | Hijazi A , Boyadjian C , Ahmad M N , et al . Solar pyrolysis of waste rubber tires using photoactive catalysts[J]. Waste Management, 2018, 77: 10-21. |
63 | Miandad R , Barakat M A , Rehan M , et al . Effect of advanced catalysts on tire waste pyrolysis oil[J]. Process Safety and Environmental Protection, 2018, 116: 542-552. |
64 | 田永静, 王增斌, 王晓康, 等 . 废轮胎热解炭吸附性能研究[J]. 南京林业大学学报(自然科学版), 2014, (6): 130-134. |
Tian Y J , Wang Z B , Wang X K , et al . Study on adsorption capacity of the charcoal obtained by pyrolyzation of waste tire[J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38 (6): 130-134. | |
65 | Banar M , Ozkan A , Akyildiz V , et al . Evaluation of solid product obtained from tire-derived fuel (TDF) pyrolysis as carbon black[J]. Journal of Material Cycles and Waste Management, 2015, 17(1): 125-134. |
66 | Guerrero-Esparza M M , Medina-Valtierra J , Carrasco-Marin F . Chars from waste tire rubber by catalytic pyrolysis and the statistical analysis of the adsorption of Fe in potable water[J]. Environmental Progress & Sustainable Energy, 2017, 36(6): 1794-1801. |
67 | Lian F , Huang F , Chen W , et al . Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems[J]. Environmental Pollution, 2011, 159(4): 850-857. |
68 | 高晗, 陈帅, 马振国, 等 . 废轮胎热解炭黑的研磨改性及其在丁苯橡胶中应用[J]. 橡胶工业, 2018, 65(12): 1379-1382. |
Gao H , Chen S , Ma Z G , et al . Grinding modification of pyrolysis carbon black from waste tire and its application in SBR[J]. China Rubber Industry, 2018, 65(12): 1379-1382. | |
69 | Berki P , Karger-Kocsis J . Comparative properties of styrene-butadiene rubbers (SBR) containing pyrolytic carbon black, conventional carbon black, and organoclay[J]. Journal of Macromolecular Science Part B-Physics, 2016, 55(7): 749-763. |
70 | Shilpa, Kumar R , Sharma A . Morphologically tailored activated carbon derived from waste tires as high-performance anode for Li-ion battery[J]. Journal of Applied Electrochemistry, 2018, 48(1): 1-13. |
71 | Zhi M J , Yang F , Meng F K , et al . Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1592-1598. |
72 | 赵世怀, 张翠翠, 张蕾, 等 . 以KMnO4改性炭黑为载体Pd-Ni催化剂的制备和性能[J]. 精细化工, 2019, 36(5): 940-944+970. |
Zhao S H , Zhang C C , Zhang L , et al . Preparation and properties of Pd-Ni catalysts supported by KMnO4 modified carbon black [J]. Fine Chemicals , 2019, 36(5): 940-944+970. | |
73 | Zhang C , Liang X Q , Liu S X . Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char[J]. International Journal of Hydrogen Energy, 2011, 36(15): 8902-8907. |
74 | Ji R N , Yu K , Lou L L , et al . Chiral Mn(III) salen complexes immobilized directly on pyrolytic waste tire char for asymmetric epoxidation of unfunctionalized olefins[J]. Inorganic Chemistry Communications, 2012, 25: 65-69. |
75 | Sánchez-Olmos L A , Medina-Valtierra J , Sathish-Kumar K , et al . Sulfonated char from waste tire rubber used as strong acid catalyst for biodiesel production[J]. Environmental Progress & Sustainable Energy, 2017, 36(2): 619-626. |
76 | 冯振刚, 孙安石, 张东阳, 等 . 废橡胶裂解炭黑改性沥青混合料的黏弹特性研究[J]. 郑州大学学报(工学版), 2018, 39(1): 7-11. |
Feng Z G , Sun A S , Zhang D Y , et al . Viscoelastic characteristic of asphalt mixture modified with pyrolysis carbon black from waste tires[J]. Journal of Zhengzhou University(Engineering Science), 2018, 39(1): 7-11. | |
77 | 栗培龙, 马松松, 李建阁, 等 . 炭黑改性沥青混合料的动态响应主曲线分析[J]. 郑州大学学报(工学版), 2018, 39(4): 12-17. |
Li P L , Ma S S , Li J G , et al . Analysis of dynamic response master curve of carbon black modified asphalt mixture[J]. Journal of Zhengzhou University(Engineering Science), 2018, 39(4): 12-17. |
[1] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[2] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[3] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[4] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[5] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[6] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[7] | 刘学安, 汤丽怡, 覃健, 唐大江, 童张法, 曲慧颖. 热解Ni/Co-ZIF-8制备碳纳米管桥连多孔碳及其在超级电容器中的应用[J]. 化工学报, 2022, 73(7): 3287-3297. |
[8] | 王刚, 车小平, 汪仕勇, 邱介山. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771. |
[9] | 刘立, 蒋鹏, 王伟, 张同桓, 穆立文, 陆小华, 朱家华. 基于过程模拟和随机森林模型的生物质制氢过程因素分析与预测[J]. 化工学报, 2022, 73(11): 5230-5239. |
[10] | 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321. |
[11] | 演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930. |
[12] | 王晶, 韩巧宁, 雷以廷, 唐曼, 陈丽红, 车俊达, 刘祖广. 一步法制备富氧木质素活性炭及其亚甲基蓝吸附性能[J]. 化工学报, 2021, 72(5): 2826-2836. |
[13] | 蒋雯雯, 聂鹏飞, 胡彬, 李菁菁, 刘建允. Al2O3/AC正极选择性电容吸附水中氟离子[J]. 化工学报, 2021, 72(5): 2817-2825. |
[14] | 焦帅, 杨磊, 武婷婷, 李宏强, 吕辉鸿, 何孝军. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报, 2021, 72(5): 2869-2877. |
[15] | 叶珍珍, 陈鑫祺, 汪剑, 李博凡, 崔超婕, 张刚, 钱陆明, 金鹰, 骞伟中. 离子液体型超级电容器软包高温老化性能评测研究[J]. 化工学报, 2021, 72(12): 6351-6360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||